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Abstract. Following a fast initial breakthrough in graph based learning,
Graph Neural Networks (GNNs) have reached a widespread application
in many science and engineering fields, prompting the need for meth-
ods to understand their decision process. GNN explainers have started
to emerge in recent years, with a multitude of methods both novel or
adapted from other domains. To sort out this plethora of alternative
approaches, several studies have benchmarked the performance of differ-
ent explainers in terms of various explainability metrics. However, these
earlier works make no attempts at providing insights into why differ-
ent GNN architectures are more or less explainable, or which explainer
should be preferred in a given setting. In this work, we fill these gaps
by devising a systematic experimental study, which tests ten explainers
on eight representative architectures trained on one carefully designed
graph classification dataset. With our results we provide key insights on
the choice and applicability of GNN explainers, we isolate key compo-
nents that make them usable and successful and provide recommenda-
tions on how to avoid common interpretation pitfalls. We conclude by
highlighting open questions and directions of possible future research.

Keywords: Graph Neural Networks · Explainability.

1 Introduction and Motivation

Graph Neural Networks (GNNs) have emerged as the de-facto standard for
graph-based learning tasks. Regardless of their apparent simplicity, that allows
most GNN architectures to be expressed as variants of Message Passing [28],
i.e., exchanging messages between nodes, GNNs have proved extremely effec-
tive in preserving the natural symmetries present in many real-world physi-
cal systems [81, 37, 57, 14, 22, 8]. The versatility of GNNs allowed them to be
also applied to emulate classical algorithms [13], addressing tasks like bipartite
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matching [27], graph coloring [48] or the Traveling Salesperson Problem [56], and
approximate symbolic reasoning tasks like propositional satisfiability [70, 69, 82]
and probabilistic logic reasoning [98]. Despite recent works trying to adapt the
Transformer architecture, made popular by a wide success first in language [77,
63, 58] and then in vision applications [59, 49], to the graph domain [41, 60, 93,
20, 99], the natural inductive bias of GNNs remains at the basis of the current
success of GNNs. A major drawback of GNNs is the opacity of their predic-
tive mechanism, which they share with most deep-learning based architectures.
This severely limits the applicability of these technologies to safety-critical sce-
narios. The need to provide insights into the decision process of the network,
and the need to provide explanations for automatic decisions affecting human’s
life [17, 40], have stimulated research in techniques for shading light into the
black box nature of deep architectures [62, 71, 84, 94, 76, 74, 75, 55, 30]. The ap-
proaches have also been adapted to generate explanations for GNN models [74,
75, 55, 6]. However, networked data have peculiarities that pose specific chal-
lenges that explainers developed for tensor data struggle to address. The main
challenge comes from the lack of a regular structure, as nodes have variable
number of edges, which requires ad-hoc strategies to be properly addressed. In-
deed, a number of approaches have been recently developed that are specifically
tailored to explain GNN architectures. Yuan et al. [91] proposed a categoriza-
tion of explainers into four categories: gradient-based which exploit gradients of
the input neural network [75, 76, 55]; perturbation-based where perturbations of
the input graphs are aimed at obtaining explainable subgraphs [87, 52, 23, 66];
decomposition-based which try to decompose the input identifying the expla-
nations [6, 55, 67]; and surrogate-based where a simple interpretable surrogate
model is used to explain the original neural network [36, 97, 80].

It is often the case, however, that each work proposes a new set of benchmarks
or metrics, making the comparison across works complicated. We thereby stress
the need for a comprehensive evaluation that can fairly benchmark the explainers
under a unified lens. One of the first attempts to provide such a comparative
analysis is the up mentioned work by Yuan et al. [91], where a taxonomy of the
available explainers was proposed. In addition to this, the authors reported a
detailed overview of the most common datasets used to benchmark explainers,
along with the adopted evaluation metrics.

However, despite the wide coverage of explainers, datasets, and evaluation
metrics, only a single GNN architecture, namely a simple Graph Convolutional
Network [42], was evaluated, so that nothing can be said about the impact of
different architectures in the resulting explanations. A similar limitation affects
the works of Zhao et al. [100] and Agarwal et al. [1, 2] that, despite presenting
interesting insights in terms of consistency of explainers, desired properties of
explanation metrics and even introducing a generator for synthetic graph bench-
marks, focus their analysis to a single GNN architecture. Li et al. [47] conducted
the first empirical study comparing different GNN architectures. However, their
study is limited to node classification and the three explainers under analysis [87,
52, 66] are not well representative of the diversity of explanation strategies that
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have been proposed, as summarized in the aforementioned taxonomy [91]. The
most comprehensive study to date is the recent work by Rathee at al. [61], that
evaluated four GNN architectures over nine explainers for both node and graph
classification. However, the main goal of this study is proposing a benchmark-
ing suite to quantitatively evaluate explainers, with no attempts at providing
insights into why different GNN architectures behave differently in terms of ex-
plainability, or which explainer should be preferred in a given setting.

In spite of the aforementioned recent studies benchmarking explainability
methods for GNNs, no investigation has been done in characterizing the typical
explanation patterns associated to the topological concepts learned by the net-
work and how different architectures affect the explanation. In our survey[50],
we address these issues, with an extensive experimental study on six different
synthetic datasets. Here, for reasons of space, we focus on a specific dataset
answering the following research questions:

– RQ1: How does the architecture affect the explanations?
– RQ2: How do explainers affect the explanations?

Overall, our survey[50] aims to go beyond a merely quantitative evaluation of
the performance of explainer-GNN pairs and to make a significant step towards
explaining explainability. We run an unprecedented number of experiments in-
volving eight GNN architectures, ten instance-based explainers, and six graph
calssification dataset and enrich the quantitative results we obtain by providing
a deep understanding of the reasons behind the observed behaviours, together
with a set of recommendations on how to select and best use the most appro-
priate explainer for the task under investigation while avoiding common pitfalls,
as well as a number of open problems in GNN explainability that we believe
deserve further investigation.

2 Benchmark datasets

In this section we present the graph benchmark dataset employed in our work.
In designing the new benchmarks, we took inspiration from Faber et al. [21].

Grid: Inspired by the benchmarks presented in Ying et al. [87], the Grid
dataset is composed by 1000 Barabási-Albert (BA) graphs [7]. To half of
these 1000 graphs we attach a 3 × 3 grid, and the resulting graphs are as-
signed to the positive class, while the ones without grid are the negative
class The number of nodes in the BA graph is a uniformly distributed ran-
dom number between 15 and 30 (for the negative class) and between 6 and
21 (for the positive class). This guarantees that when adding the grid, the
average number of nodes in the positive class matches the one in the nega-
tive class. It is worth mentioning that in the experiments done by Ying et al.
[87], the total number of nodes is fixed. This benchmark evaluates the ability
of the explainers to identify explanations consisting of a simple connected
pattern.
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3 Assessment of the explanation quality

Evaluating GNNs’ explanations is a challenging task that requires to verify if
and how the explainer is effective in capturing the behaviour of the model.
There are two main strategies to evaluate explanation quality. The first is a
supervised strategy [65, 87, 24], that measures the similarity of the extracted
explanation with an existing ground-truth, which is assumed to be known. The
second strategy is an unsupervised one, that measures how much the prediction
of a GNN on the full graph resembles the prediction computed on the extracted
explanation only, and this does not require to have a ground-truth explanation
available.

We consider a metric for each of these two strategies, in order to capture
different aspects of the quality of an explanation: the plausibility of the explana-
tion with respect to a ground-truth concept that an accurate GNN is expected
to have learned, and the fidelity of the explanation with respect to the pre-
diction of the GNN to be explained. Namely, with plausibility we quantify the
consistency between the explainer mask and a human-level intuition of what a
plausible explanation looks like. On the other hand, fidelity measures the consis-
tency between the model prediction on the full graph and the on the explanation
subgraph, and thus it works with a sort of model-based instead of human-based
ground truth.

In the following we detail the metrics we employ, namely plausibility (P ) and
fidelity (F ), the latter further divided into its comprehensiveness (Fcom) and
sufficiency (Fsuf ) components presented in the supplementary3.

Plausibility Let Gexp be the expected ground truth for class c ∈ {0, 1, . . . , nc−1},
represented by a copy of the original graph G with an hard mask highlighting
the ground truth nodes. Following [61], the plausibility P of the explanation is
defined as

P = AucROC(Gexp, Gexp),

i.e., the area under the ROC curve between the computed soft mask and the
ground truth hard mask.

It is clear that this metric can only be computed on benchmarks in which the
ground truth explanation can be defined, and it is completely dependent on this
definition. For each dataset, the ground truths that we are using to compute P
are defined in Section 2.

Fidelity To aggregate Fcom and Fsuf (formally defined in the supplementary 3)
into a unique fidelity metric, for graph-classification tasks we compute what we
call f1-fidelity (Ff1), which is defined by

Ff1 = 2
(1− Fsuf ) · Fcom

(1− Fsuf ) + Fcom
.

This is indeed the f1 score [38] between Fcom and (1−Fsuf ). We use this metric
in place of Fcom and Fsuf .
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3.1 Aggregation

After we evaluate any of these metrics on each (class, model, explainer)-configuration,
we need an aggregation mechanisms to assign a unique score to the models and
the explainers over all classes and datasets. This permits to avoid visualizing the
detailed metrics over the entire set of configurations, and make the results easier
to be interpreted.

To define these aggregate metrics we proceed as follows, where the same
procedure are repeated for both plausibility and fidelity: (1) For each (class,
model, explainer)-configuration we keep only the class with the highest value
of the metric, i.e., the best explained class. (2) For a given dataset, we rank
the model-explainer pairs according to the values selected in point (1). The
aggregated score of each pair is the ranking number 1, 2, . . . . (3) The dataset-
level scoring of an architecture, of an explainer, or of a category of explainers
(e.g. grad-based, or edge-based) is the average of the scores of point (2) over all
the corresponding pairs.

To assess instead the stability the explanations over an entire dataset, we
propose a qualitative visualization of the masks which is discussed for each ex-
perimental setting.

4 Experimental setting

Any explainer provides an explanation of the prediction of a given instance of
a model, as it is obtained after an optimization process on a specific dataset. It
is thus of paramount importance to identify the choices made in the training of
the networks that will be analyzed in the following.

In the supplementary section 2 and 1, we provide an overview of the primary
architectures and explainer utilized in our experiments, along with the rationale
behind our selection.

We report in Table 1 the details of the networks used, the parameters used
for their optimization, and the resulting train and test accuracies. For each ar-
chitecture, the table shows the dimensions of the hidden layers of GNN type
(column GNN ) and of fully connected type (column Fully conn.), and any addi-
tional parameter used for the definition of the architecture (see Section 1 for a
definition of these hyperparameters). For example, in the first row the numbers
30− 30− 30 and 10− 2 mean that three Gcn layers are applied, each mapping
to a target dimension of 30, followed by two fully connected layers with target
dimensions 10 and 2.

The table additionally reports the learning rate (column LR) and number of
epochs used in the training, where an ADAM optimizer has been used in each
case. We remark that these configurations have been chosen with the guiding
principle of obtaining the simplest configuration achieving a target 0.95% train
accuracy.

The last two columns of Table 1 show the resulting train and test accuracies
obtained by the models trained according to these specifications. We remark that
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for some configurations it was not possible to achieve the desired target accuracy,
so the table reports an "X" in place of the accuracy values, and it reports the
values corresponding to the largest architecture which has been tested. Being
not sufficiently accurate, these models have been removed from the successive
analysis.

Architecture GNN Fully conn. HyperParams LR Epochs Train
Acc

Test
Acc

Gcn 30-30-30 10-2 - 0.001 1500 0.994 0.998
GraphSage 30-30-30 10-2 - 0.01 3000 X X

Gat 30-30-30 10-2 heads = 1 0.01 3000 X X
Gin 30-30 30-2 - 0.001 1000 1.0 1.0
Cheb 30-30 30-2 - 0.001 1000 1.0 1.0

MinCutPool 32-32-32 32-2 - 0.001 700 0.92 0.93
Set2Set 30-30-30 10-2 - 0.001 1500 0.97 0.97

GraphConv 30-30 30-2 - 0.001 500 1.0 1.0
Table 1. Configuration of the graph-classification models, and corresponding accura-
cies. The table reports for each dataset and each architecture the dimension, number,
and hyperparameters defining the hidden layers, together with the optimization pa-
rameters, and the obtained train and test accuracies. The configuration-dataset pairs
which did not reach the target 95% train accuracy are marked with an "X", and are
not further analyzed in this work.

5 Results

5.1 Research questions

The comparative analysis of the behavior of the explainers is developed along
the following research questions, which will apply to both node and graph clas-
sification tasks.

– RQ1: How does the architecture affect the explanations? This re-
search question can be naturally divided into the following three subques-
tions:
• RQ1.1: Which is the architecture that has the best explanation? With

this question we would like to understand which is the architecture that
achieves the best score, either in terms of f1-fidelity or plausibility.

• RQ1.2: Which is the easiest architecture to explain? This question aims
at finding what is the architecture that is well explained by the greatest
number of explainers.

• RQ1.3: Which is the hardest architecture to explain? In this case we
want to search for an architecture that achieves the lowest score.
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– RQ2: How do explainers affect the explanations? Even this question
can be divided into subquestions, which try to cover different open problems
related to state of the art GNN explainers. We identify them as follows:
• RQ2.1: Which is the explainer that explains in the best way? Here we are

interested in finding the explainer able to obtain the highest Plausibility
or Fidelity.

• RQ2.2: Which is the explainer that explains the maximum number of
architectures? This aspect is particular important because we need ex-
plainers which are robust with respect to different GNN architectures.

• RQ2.3: Which is the category of explainers that provides the best expla-
nations? The subquestion searches for the best category of explainers.
As defined by [91], we consider three macro-categories, namely gradi-
ent based (Grad), perturbation based (Pert), and decomposition based
(Dec).

• RQ2.4: Which is the best mask type between node and edge? By answer-
ing this question we investigate if there is an advantage for explainers
based on node or edge importances.

We would like to remark that RQ2.3 and RQ2.4 are particularly relevant
for future research in GNN explainability, since they may provide actionable
guidelines for the development of new explainers.

RQ1: How does the architecture affect the explanations? Table 2
visualizes in a compact form the answer to research questions RQ1, where
the aggregation mechanism described in Section 3.1 has been used to identify
a ranking of the architectures across all explainers, both in terms of plausi-
bility and fidelity, and the highest ranking architecture is reported for each
research question.
The architecture with the best explanation (RQ1.1) is GraphConv for
plausibility (paired with IgEdge) and Cheb for fidelity (paired with Pg-
Expl).
The easiest architecture to explain (RQ1.2) is Cheb for plausibility and
Gcn for fidelity. We remark that Gcn and Set2Set work with the same
underlying GNN layers (Gcn), and they differ only in the final aggregation
operation (a sum in Gcn, and an LSTM in Set2Set). The better perfor-
mances of Gcn are thus hinting to the fact that a different global aggregation
alone is responsible for changing a network’s explainability, and that linear
aggregations (Gcn) are, perhaps unsurprisingly, easier to explain than non-
linear ones (Set2Set). In general terms, the role of the global aggregation
function and its stability across different tasks is yet to be fully understood,
and has not received great attention in the explanation literature. Thus, we
believe that a systematic study in this direction may be an interesting future
direction of research.
Finally, from the figure it is easy to see that Gin is the most difficult network
to explain (RQ1.3), for both plausibility and fidelity.
This stark difficulty in explaining Gin is not directly understandable, espe-
cially because it is implemented with a single-layer MLP, which does not
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introduces stronger non-linearity than a simpler GCN. This aspect could be
interesting to be addressed by future studies.

Plausibility Fidelity
Grid Grid

RQ1.1 GraphConv RQ1.1 Cheb
RQ1.2 Cheb RQ1.2 Gcn
RQ1.2 Gin RQ1.2 Gin

Table 2. Experimental answer to RQ1 for graph classification. The table shows the
top-ranking architecture with respect to each subquestion RQ1.1, RQ1.2, RQ1.3.
The rankings are computed with respect to the Plausibility and Fidelity metrics.

To offer an additional insight into this fine-grained behavior of Gcn, which
is the easiest architecture to explain according to RQ1.2 in terms of fidelity,
we pick a random element and analyze the mask provided by each explainer.
Figure 1 reports these masks, where each column corresponds to a different
explainer. The first five explainers return a node importance, while the last
four are edge-based. In both cases, the node or edge importance is rendered
by a different color intensity. We stress once again that only one random
graph is shown in the figure, and thus the following discussion is of a rather
qualitative nature, to be complemented with the metrics discussed in the
first part of this section.
Gcn manages to achieve good results in terms of both plausibility (ranked
as second) and fidelity, meaning that its explanations are both close to the
expected ground truth and to the actual one used by the models to real-
ize their prediction. This duality can be observed across the examples of
Figure 1. Indeed, there are cases where the masks identify clearly the grids
in Grid (Cam, GradCam, IgEdge, GradExplEdge, PgExpl). On the
other hand, for many other explainer, the mask is less localized and inter-
pretable by a human eye, but the overall high scores of this explainer suggest
these explanations could still be good, at least in terms of fidelity and thus
from a model perspective, even if they deviate from the expected ground
truth.

Fig. 1. Explanation masks (node- or edge-based) computed by the different explainers
on the predictions of Gcn. Each row visualizes the mask computed for a given random
graph from each dataset.
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RQ2: How do explainers affect the explanations? The answers to this
question are summarized in Table 3, where we used again the aggregation
strategies defined in Section 3.1 to establish a ranking of the explainers and
select the best one.
Interestingly, the overall best explainer is different for plausibility and fi-
delity, but it is the same when looking at the best performing one in absolute
terms (RQ2.1), and on average across all architectures (RQ2.2). In fact,
the highest plausibility is achieved by IgEdge, while the highest fidelity is
achieved by PgExpl. Although different, they both produce an edge impor-
tance mask.
In terms of average performances (RQ2.3), perturbation based explainers
are those that best explain all the models for both plausibility and fidelity,
even if the single best ones are edge- and gradient-based (RQ2.1). The an-
swer to this question is particularly remarkable, since perturbation-based
explainers are selected as the best ones for both metrics.
When looking at the average over the entire groups (RQ2.4), edge-mask
based explainers are clearly overperforming node-based ones, in accordance
with RQ2.1 and RQ2.2. We argue that this may be due to the fact that
edge-based explainers have been developed specifically for graph-explanation
tasks, while node-based ones are all adaptations of existing explainers, intro-
duced for other settings. We remark once again that this is the case only for
graph classification, while for node-based tasks node-based explainers appear
to be superior.[50]

Plausibility Fidelity
Grid Grid

RQ2.1 IgEdge RQ2.1 PgExpl
RQ2.2 GradExplEdge RQ2.2 IgEdge
RQ2.3 Pert RQ2.3 Pert
RQ2.4 Edge RQ2.4 Edge

Table 3. Experimental answer to RQ2 for graph classification. The table reports the
top-ranking explainer with respect to each subquestion RQ2.1-RQ2.4. The rankings
are computed with respect to the Plausibility and the Fidelity metrics.

Similarly to the previous section, Figure 2 zooms into GradExplEdge,
which is the best-ranking explainer according to RQ2.1 and with respect to
plausibility. We show the results for each GNN for which GradExplEdge
works, i.e., those that accept edge weights in the training phase. The high
plausibility of the explainer means that it is effective in identifying the
human-expected explanations in the graphs, and this is clearly visible in
the examples of Figure 2: with a few exceptions, the dark red edges identify
the grid in Grid.

Grid In the Grid dataset, the concept is a grid attached to a random
Barabási–Albert (BA) network. Since the BA component is identical in the
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Fig. 2. Explanation masks computed by GradExplEdge on the predictions of the
different models. Each cell visualizes the mask computed for a given random graph.

positive and negative classes, the only discriminative subgraph is the grid
(or part of it). In fact, the minimal discriminant subgraph for this dataset
is a square, because the BA component does not contain it.
Left panel of figure 3 visualizes the performance of each model-explanation
pair when applied to this dataset. Each pair is located according to the
two-dimensional coordinate given by the resulting Fidelity (horizontal axis)
and Plausibility (vertical axis), and it is identified by the model name and
by a color representing the explainer. We use warm colors for node-based
explainers, and cold colors for edge-based ones.
This visualization permits to identify those model-explanation pairs which
strike the best balance between the two scores, namely, models that maxi-
mize both plausibility and fidelity are in the top right corner of the figure.
It is first relevant to observe that a clear positive correlation emerges for the
top-performing pairs, in the sense that there are no cases where a high fi-
delity is achieved without a correspondingly high plausibility, and viceversa.
Moreover, the highest plausibility is achieved by GraphConv with IgEdge,
while Cheb with PgExpl obtain the highest fidelity. These are also the two
Pareto-optimal pairs, i.e., any other pair reaches either a smaller fidelity or
a smaller accuracy. In this sense, they are the best ones according to this
evaluation.
Moreover, it is remarkable to observe that the three best performing pairs
(thus including also the Gcn-GradExplEdge pair) have all edge-based
explainers. This fact is in perfect accordance to the answer to RQ2.4 (Sec-
tion 5.1), which identifies this type of explainers as superior to node-based
ones. Observe however that Grid has no node features, and this may bias
this aspect.
For these three top-performing pairs (GraphConv-IgEdge, Cheb-PgExpl,
Gcn-GradExplEdge) we further investigate the quality of the explana-
tions by quantifying their stability. Namely, we are interested in understand-
ing how the different instances of graphs in the dataset are explained, and if
there is any recurring pattern in these explanations.
This stability is shown in the right panel of Figure 3, where each edge in
the grid motif is colored according to its importance averaged over all the
networks in Grid, with a color scale ranging from white (for importance 0) to
dark red (for importance 1). The width of each edge is instead proportional
to the standard deviation of the explanation across the dataset, such that
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Fig. 3. Left: fidelity and plausibility achieved by all the model-explainer pairs when
applied to Grid. In each pair the name refers to the model, while the color iden-
tifies the explainer. Right: stability of the explanations for the three top-performing
model-explanation pairs. The colors identify important edges (dark red), and the edge
thickness the variability of the importance in the dataset.

thicker edges describe a larger deviation, hence a smaller stability, and vice-
versa.
We notice that the most stable explanation is given by GraphConv with
IgEdge, since the entire grid motif is dark red and with thin edges. On the
other hand, the most unstable one is Gcn with GradExplEdge, where
not all edges are important, and a considerable deviation is found across
the dataset (thick edges). To conclude the analysis on Grid, Figure 4 shows
a prototypical explanation for each GNN, paired with its best explainer
as identified by highest combination of the two metrics. Overall, we can
assert that each GNN can be explained fairly well if the concept is a simple
subgraph into the network. As anticipated in subsection 5.1, Gin is the
hardest to explain, while the best explanations are obtained with grad and
perturbation based explanations producing edge masks.

Fig. 4. Examples of explanations provided for each model and its highest plausibility
explainer, when applied to a random sample from Grid. The plausibility and fidelity
values are those of the entire dataset, as reported in Figure 3
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6 Discussion

The main objective of this work is to experimentally study the effectiveness
of explainers on different GNNs and types of data, identifying current pitfalls
and formulating possible future directions in the field of GNN explainability.
Given that GNNs may learn different concepts, possibly less intuitive, than
those expected by humans, defining ground truths is not a trivial task and
may be prone to human biases. A first simple remark is that GNNs, as
neural networks in general, tend to be lazy and learn a "default" option for
one of the classes. For this reason, a high accuracy does not necessarily imply
having learned the ground-truth concept for the class. A useful insight that
emerged from our analysis is that these human biases can often be detected
by comparing plausibility and fidelity. Indeed, an explainer with high fidelity
and low plausibility (or vice-versa) clearly indicates a discrepancy between
what is considered to be the ground truth and the concept learned by the
GNN.
Identifying a general category of explainers working consistently better than
others is challenging. However, the category of explainers that best explain
GNNs for graph classification are those that focus on edges, be it by pertur-
bation or gradient. In general, edge-based explainers outperform node-based
ones.
Concerning GNN architectures, there is a substantial difference in their ex-
plainability, regardless of the explainer that best suits each of them. We
believe that this results is surprising yet not fully understood, given that
explainers are usually aimed to be model agnostic. Given the importance of
explaining predictions, it would be advisable to include explainability as a
metric to be optimized when designing novel GNN architectures.

7 Conclusion

In this work, we proposed an extensive experimental study to quantify the
effectiveness of the existing explainers and to obtain actionable recommen-
dations to select the optimal method for a given task. For this comparison
we evaluated ten explainers on eight different GNN architectures, all chosen
to represent the most commonly utilized instances in a vast taxonomy of
existing solutions. These methods have been tested on graph classification.
As a result of our experimental study, we were able to describe significant
criticalities in the common explainer evaluation methods, and to identify re-
curring patterns that make some category of explainers preferable in certain
situations. Our findings naturally point to promising future research direc-
tions, and especially highlight once more that much has yet to be understood
to achieve a satisfactory GNN explainability.
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1 Graph Neural Networks

In this section we first introduce the notation to deal with the GNN for-
malism, then we review the GNN architectures explicitly used in our study.
We consider a graph G := (V,E,X), with nV ∈ N nodes V := {1, . . . , nV },
nE ∈ N edges E ⊂ V × V , and a matrix of d-dimensional node features
X ∈ RnV ×d, where the i-th row of X is the vector of d ∈ N features of the
i-th node. We use the matrices A,L, I, Ã, D̃, L̃ ∈ RnV ×nV , where A and
L are the adjacency and Laplacian matrices of G, I is the nV -dimensional
identity matrix, Ã := A+I, D̃ is its diagonal matrix, and L̃ := 2

λmax(L)L−I

is the scaled and normalized Laplacian, where λmax(L) is the largest eigen-
value of L. Furthermore, N(i) := {j ∈ V : (i, j) ∈ E} is the first order
neighborhood of the node i ∈ V .
Each GNN layer takes as input the graph G, and maps the node features
X ∈ RnV ×d to updated node features X ′ ∈ RnV ×d′

for a given d′ ∈ N. Some
specific GNN layers, like Hierarchical pooling layers [102, 88, 44, 12], instead
of refining the embedding for each input node aggregate nodes in order to
coarsen the graph in a similar way as done by pooling methods for vision
models [15, 75, 43], thus resulting in a node feature matrix X ′ ∈ Rn′×d′

where
n′ < nV . Overall, this new feature matrix X ′ represents the embedding or
representation of the nodes after the application of one layer of the network.
When needed, we denote as Xi,X

′
i the original and transformed feature

vector of the i-node, i.e., the transpose of the i-th row of the matrices X,X ′.
Specifying the map X → X ′ is thus sufficient to provide a full specification of
the different layers. These transformations are parametric, and they depend
on trainable weights that are learned during the optimization of the network.
We represent these weights as matrices W . Additional terms specific to single
layers are defined in the following.
After an arbitrary number t of GNN layers stacked in sequence, the node
embedding matrix X(t) is further processed in a way that depends on the
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task to perform. In node classification settings [42, 35], where the aim is
predicting one or more node properties, a Multi-Layer Perceptron (MLP) [33]
(with shared parameters across nodes) is applied to each node’s embedding
independently in order to output its predicted class. For graph classification
settings [35] instead, where the goal is predicting a label for the entire graph,
a permutation invariant aggregation function (like mean, max, or sum) is
applied over nodes’ embedding to compress X(t) into a single vector which
is then mapped to the final prediction via a standard MLP.
With this notation settled, we can now fully define the architectures that
we are going to consider. In selecting the architectures to be included in
our study, we relied on the comprehensive taxonomy of GNN methods pub-
lished by Zhou et al. [102]. Since our goal is to provide an extensive overview
of explainability methods for GNNs, we selected the models to benchmark
aiming at covering as much as possible the different categories of the taxon-
omy. The specific methods are also selected depending on their popularity,
their ease of training, their performances on our benchmark datasets, and
their code availability. Overall, we analyzed the following categories: Con-
volutional whose computation can be roughly intended as a generalization
of the convolution operation on the image domain. Such convolution can
either be Spectral [18, 42], theoretically grounded in graph signal process-
ing [73], or Spatial [78, 31, 86, 29], where the operations are usually defined
in terms of graph topology; The Pooling category contains all approaches
that aggregate node representations in order to perform graph-level tasks.
They can be further differentiated into Direct [79, 95], where nodes can be
aggregated with different aggregation strategies, often called readout func-
tions, and Hierarchical [88, 12, 89, 44, 9], where nodes are progressively hi-
erarchically aggregated based on their similarity. The latter methods often
allow one to cluster nodes both based on their features and their topological
neighborhood [88, 9]. Despite covering the major aspects of GNN architec-
tures, the aforementioned taxonomy lacks some of the fundamental works
that we will analyze in our study. Particularly, to compensate that, we de-
cided to respectively include the Graph Isomorphism Network (Gin) [86]
and the GraphConv Higher Order Network (GraphConv) [54] as Spatial
Convolution and Higher Order, the latter being a new category added to the
taxonomy. A summary of such categorization can be found in Figure 1. In
the following, we broadly describe each GNN model used in this work, re-
porting for each one the category as identified by Zhou et al. [102]. Although
the following definitions are often given as global functions of the graph for
notational convenience, we remark that all the layers of a GNN can be ef-
ficiently implemented as local operations by means of a message-passing or
sparse matrix multiplications.
Chebyshev Spectral Graph Convolution (Cheb, Spectral Convolution) [18]:

The Chebyshev spectral graph convolutional operator [18] was aimed to
generalize the convolution operation from the image to the graph do-
main. In doing so, it approximates the convolution of the node features
with a trainable filter where such approximation is defined in the Fourier
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Fig. 1. An overview of the adopted GNN architectures structured in a taxonomy as
defined by Zhou et al. [102]. In particular, blue boxes represent the categories as defined
by the aforementioned work, while the purple box corresponds to the newly introduced
Higher Order category.

domain by means of a Chebyshev polynomial. Since explicitly comput-
ing the convolution in the Fourier domain is very computationally ex-
pensive, to this end Cheb adopts the truncated recursive Chebyshev
expansion [32], where the Chebyshev polynomial Tk(x) of order k can be
computed by the recurrence Tk(x) = 2xTk−1(x)− Tk−2(x) with T1 = 1,
T2 = x. Given a degree K ∈ N, we thus have:

X ′ =

K∑
k=0

Z(k) ·W (k), (1)

where Z(k) is computed recursively as:

Z(1) = X, Z(2) = L̃ ·X, Z(k) = 2L̃ ·Z(k−1) −Z(k−2).

In our analysis we kept K = 5.
Graph Convolutional Network (Gcn, Spectral Convolution) [42]: Gcn [42]

represents a first-order approximation of localized spectral filters on
graphs [18]. For a single layer, the node representation is computed as:

X ′ = σ(D̃
−1/2

· Ã · D̃
−1/2

·X ·W ), (2)

with W ∈ Rd×d′
, and where σ : R → R is a nonlinear activation func-

tion that is applied entry-wise. The normalization applied to Ã is in
place to avoid numerical instabilities after successive applications of the
above propagation rule. It effectively normalizes the node-wise aggrega-
tion by a weighted sum where each neighbor is weighted by the incident
edge weight normalized by the degree of the two nodes. The connec-
tion with Cheb introduced above can be seen by keeping the number
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of convolutions per layer to 1, thus by setting K = 1. After some fur-
ther simplifications detailed in [42], and here omitted for brevity, we can
rewrite the spectral convolution as W (k) · (I + D̃

−1/2
· Ã · D̃

−1/2
) · x.

After applying the renormalization trick introduced in [42] and by gen-
eralizing the formulation to a node feature matrix X ∈ RnV ×d we get
the formulation of Eq 2.

Graph SAmple and aggreGatE (GraphSage, Spatial Convolution) [31]:
This work was proposed as an extension of Gcn. Contrary to Gcn,
which inherently implements a weighted mean neighborhood aggrega-
tion, GraphSAGE generalizes to different kinds of aggregations like mean,
max or Long Short-Term Memory (LSTM) aggregations [31, 34].

X ′
i = W 1Xi +W 2 · aggregationj∈N(i)Xj , (3)

where W 1,W 2 have both dimension nV ×d′ and the function aggregation
can be any permutation invariant function. Note that in the case of the
LSTM aggregation, the authors adapted LSTMs to operate on sets by
simply applying the LSTMs to a random permutation of the nodes. In
our study we used the mean of node features as aggregator.

Graph Isomorphism Network (Gin, Spatial Convolution) [86]: The work
of Xu et al. [86] was among the first ones to study the expressive power
of GNNs in relation to the Weisfeiler-Lehman (WL) test of isomor-
phism [83]. The key insight is that a GNN can have as large discrim-
inative power as the WL test if the GNN’s aggregation scheme is highly
expressive and can model injective functions, like the aggregation of the
WL test. They studied the conditions for which a GNN has the same
discriminative power as the WL test, and then they proposed the Graph
Isomorphism Network (Gin) that provably satisfies such conditions [86].
The Gin computes node representations as:

X ′ = hW ′((A+ (1 + ϵ) + I) ·X), (4)

where ϵ ∈ R is a small number, and hW ′ is a neural network whose
weights W ′ are the trainable part of the Gin layer. This model gener-
alizes the WL test and hence achieves maximum discriminative power
with respect to the WL test [86]. In our work, to limit the complexity of
the network, we limited hW ′ to have a single layer.

Graph Attention Network (Gat, Spatial Attentional Convolution) [78]:
Following the successes of attention mechanism in natural language pro-
cessing [77, 58, 63] and in computer vision [85, 59], Veličković et al. [78]
proposed a GNN layer which computes each node’s representation as
a weighted sum of neighborhood features, where the weights are com-
puted via an attention mechanism. Such attention mechanism helps the
layer to focus on neighbors which are considered to be important for the
current node, instead of treating each neighbor equally importantly [5].
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Specifically, the propagation rule for each node can be defined by:

X ′
i =

∑
j∈N(i)∪{i}

αi,jW ·Xj , (5)

where the αi,j are attention coefficients, which are the output of a single-
layer feed forward neural network applied to W ·Xi,W ·Xj . Namely, if
[x||y] denotes the concatenation of the vectors x, y, and if W ′ ∈ R2d′×1

is a vector of trainable weights, then αi,j is defined by

αi,j :=
exp(LeakyReLU((W ′)T [WXi||WXj ]))∑

k∈N(i)∪{i} exp(LeakyReLU((W ′)T [WXi||WXk]))
, (6)

where LeakyReLU has usually a slope α := 0.2 if x ≤ 0. Similarly as
previous works on attention [77, 16, 58, 63, 59], Gat can implement multi-
head attention in order to increase the attention’s expressive power in
modelling different aspects of node features.

MinCutPooling (MinCutPool, Hierarchical Pooling) [9]: Hierarchical pool-
ing methods can be categorized into dense methods[9] and sparse meth-
ods[25], with the former being shown to be more expressive than the
latter[10]. Similarly to other graph pooling mechanisms [88, 12, 89, 44],
MinCutPool is able to hierarchically aggregate nodes into coarser rep-
resentations to summarize local components and remove redundant in-
formation. Graph pooling follows a similar idea as pooling in standard
architectures for vision applications [15, 75, 43], where it helps to re-
duce the memory and computation footprint of the model. However, the
structured graph domain poses new challenges which required ad-hoc
techniques for achieving good performing pooling methods. MinCut-
Pool [9] achieves so by formulating a relaxation of the MinCut problem
and by training a GNN to compute cluster assignment by jointly opti-
mizing the downstream supervised loss and the additional unsupervised
mincut loss. In particular, a soft cluster assignment matrix S ∈ RnV ×n′

V

is computed with a MLP with softmax activation over a refined set of
node features (e.g. after one or more layers of message passing). Then,
both the adjacency matrix and the node features’ matrix are updated
accordingly:

X ′ = ST ·X,

Ã = ST ·A · S − In′
V
diag(ST ·A · S),

A′ = D̃
1
2 · Ã · D̃ 1

2 .

We refer the interested reader to [9] for the details about the mathe-
matical formulation of the differentiable MinCut problem. Since pool-
ing methods modify the graph structure, they are not typically suitable
for node classification and link predictions tasks [88, 12, 89, 44]. We will
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henceforth refer to as MinCutPool for an architecture implemented
with Gcn layers interleaved with the MinCutPool operator.

Set2Set (Direct Pooling) [79]: The Set2Set model [79] is a specific ap-
proach for global graph pooling which takes as input the node-level rep-
resentations, as computed by any GNN layer, and outputs a single rep-
resentation for the entire graph suitable for graph-level tasks (e.g. graph
classification [35], molecular property prediction [39, 11], etc.). Whilst
traditional approaches simply taking the mean/max/sum of every node’s
representations, Set2Set can be seen as learning the aggregation via
an LSTM. Thus, the node features are treated as sequences, which are
processed through an LSTM network to obtain an embedding of the
entire graph, represented as a vector of length 2d. To enforce permu-
tation equivariance, the ordering of the nodes can be either learned or
randomized during training. The underlying LSTM works as follows:

qt = LSTM(q∗
t−1), αi,t = softmax(Xi · qt),

rt =
nV∑
i=1

αi,tXi, q∗
t = [qt||rt] .

where q∗
t is the output of the layer. The subscript t ∈ {1, . . . , T} indicates

that the process may be repeated a number T ∈ N of times. In our work
we refer to Set2Set as a GNN architecture implemented as a number of
Gcn layers with the Set2Set global pooling operator and with a value
of T = 7.

GraphConv (Higher Order) [54]: To increase the expressivity of GNNs,
researchers developed techniques to capture not only 1-hop connections,
i.e., between the node neighborhood, but also to capture higher order
connections [54, 46, 19, 64, 96, 45, 26]. This network captures higher order
connections of a graph (up to order two) by aggregating information from
neighbourhood nodes and incident edges. It is defined as:

X ′
i = W 1Xi +W 2

∑
j∈N(i)

ei,j ·Xj , (7)

where W 1 and W 2 are learnable weight matrices, while ei,j is the edge
weight from node i to node j.

2 GNN Explainability

To analyze and understand the strengths and weakness of graph explanation
algorithms, we selected instances of GNN explainers which are representative
of the current state of the art. To this end, we follow the systematization pro-
posed by Yuan et al. [91], and choose to investigate instance-based explain-
ers[101, 71, 74, 76, 75, 80, 87, 6, 68, 36, 62, 92, 53, 72, 51, 97, 67, 23], i.e., those which
aim at identifying components of the input that are responsible for the
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model’s output. This is in contrast with model-based explainers, which rather
try to provide a global understanding of a trained model [3, 90]. Since the
available model-based explainers are very heterogeneous (i.e. it is not avail-
able a unified evaluation setting), and since previous works on benchmark-
ing graph explainers have focused on instance-based methods [91, 100, 1, 2,
47, 61], we thereby omit model-based explainers. In particular, Yuan et al.
[91] identifies four macro categories of instance-based explainers, namely gra-
dient-, perturbation-, decomposition- and surrogate-based models. Roughly
speaking, gradient-based explainers exploit gradients of the input neural net-
work [75, 76, 55], perturbation-based models perturb the input aiming to ob-
tain explainable subgraphs[87, 52, 23, 66], decomposition-based models try to
decompose the input identifying the explanations [6, 55, 67], while surrogate-
based models use a simple interpretable surrogate to explain the original
neural network [36, 97, 80].
Independently from this categorization, a further fundamental distinction
is among explainers providing explanations in terms of edge [87, 52, 66, 92]
or node masks [75, 76, 55, 6, 55, 67]. We refer to edge mask every time the
explainer gives as output any sort of likelihood for each edge in the input
graph. Conversely, a node mask represents likelihoods for every node in the
graph. Few explainers allow also to extract a node feature mask [87, 74],
which highlights the contribution of each single feature in the input node
feature mask. However since single node features are not representative of
the underlying topological structure which we are interested in, and in line
with most previous works [91, 100, 1, 2, 47, 61], we do not consider single node
features’ explanations.
Below we report a brief overview of our benchmark explainers. Despite the
existence of other works proposing explainers, which occasionally fall out-
side the aforementioned categorization [92, 53, 72, 51, 36, 97, 67], we limited
our analysis on a subset. More specifically, the criteria for selecting a given
explainer can be roughly summarized by i) representativity of a specific cate-
gory as outlined before; ii) code availability; and iii) feasibility of usage, i.e.,
whether the explainer is not too computationally heavy to be used. Unfor-
tunately, for the decomposition category, we did not find an explainer with
a working codebase that could be promptly included in our study.
Given a GNN g to be explained, let g(e)c = yc = (wc)

T
e be the prediction

of the model where e corresponds to the final graph-level or node-level em-
bedding. The vector wc ∈ Rd′

contains instead the learned Fully Connected
weights for class c to perform the final classification, and Hc[n] represents
the importance of node n for the prediction of class c. A brief summarization
of the methods is available in Table 1.

GradExplNode (Gradient) [74]: Inspired by the previous work com-
puting explanation in the context of Bayesian classification [4], Grad-
ExplNode computes the attribution for each input by backpropagation
to the input space. The general idea is that the magnitude of the deriva-
tive gives insights into the most influential features that, if perturbed,
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give the highest difference in the output space:

Hc
GradExplNode[n] =

∂yc

∂Xn
(8)

To derive a single value for each input node, it is possible to take the
maximum magnitude along the feature channel. Similarly, if the GNN
to explain supports edge weights, then this method can be applied on
edges, thus producing an edge mask. In the rest of the paper we will refer
to this method with GradExplNode and GradExplEdge, whether
it is applied to node or edges, respectively.

GuidedBp: (Gradient) [75] Guided Back Propagation (GuidedBp) fol-
lows a similar approach as GradExplNode, with the only difference
that in the backpropagation it clips negative gradients which corresponds
to features prone to decreasing the target activation, and thus considered
as noise.

IntegratedGradients: (Gradient) [76] IntegratedGradients builds
on top of simple Gradient-based methods, like GradExplNode, by in-
tegrating the gradient along a path. Specifically, given x′ ∈ Rd a base-
line input which represents a neutral input, often represented by a zero-
vector, the resulting explanation is computed as:

Hc
IntegratedGradients[n] = (Xn − x′)

∫ 1

0

∂f(x′ + α(Xn − x′))

∂Xn
dα (9)

In short, the explanation corresponds to the integral computation of
the gradients along the straight line path from an input baseline to the
original value of the input. The adoption of this integral computation was
shown to provide better theoretical guarantees then other approaches, as
demonstrated in [76]. Nonetheless, for an efficient implementation, the
integral in Eq 9 is substituted by a finite summation. This explainer can
be applied even on edges if the GNN support edge weights. In the rest of
the paper, we will refer to IgNode and IgEdge, whether it is applied
to nodes or edges, respectively.

Cam (Gradient) [55]: Class Activation Map (Cam) maps backward the
node features in the final layer to the input space for identifying impor-
tant nodes. It represents a straightforward adaptation of Cam originally
developed for Convolutional Neural Networks [101] to the graph domain.
The Cam heat-map for node n and class c is defined as:

Hc
Cam[n] = ReLU

(
(wc)

T
X(t)

n

)
(10)

GradCam (Gradient) [55]: GradCam represents an extension of Cam.
Instead of using the weights wc to weight the contribution of each feature,
GradCam uses the gradient of the output with respect to node features.

Hc
GradCam[n] = ReLU

(
(αc)

T
X(t)

n

)
(11)
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αc
k =

1

N

N∑
n=1

∂yc

∂X
(t)
n,k

(12)

where αc = [αc
0 . . . α

c
d′ ]. Note GradCam allows also to compute the heat-

map for each layer independently, by simply replacing the node feature
matrix in the above equations with the features of any specific layer [71].

GNNExplainer (Perturbation) [87]: GnnExpl is able to provide an ex-
planation both in terms of a subgraph of the input instance to explain,
and a feature mask indicating the subset of input node features which is
most responsible for the GNN’s prediction. Overall, it is formulated as
an optimization problem maximizing the Mutual Information between
the GNN’s predictions and distribution of possible subgraphs. However,
in practical terms, since the optimization problem formulated in this way
is intractable given the exponential number of subgraphs for a specific
input graph, a relaxed version is actually computed, which can be inter-
preted as a variational approximation of the distribution of subgraphs.
Nonetheless, despite the non-convex nature of the problem, the authors
empirically observed that the aforementioned approximation together
with a regularizer for promoting discreteness converges to good local
minima.

PgExpl: (Perturbation) [52]: The Parametrized Explainer for GNNs (PgExpl) [52]
adopts a very similar formulation of the explanation problem as Gn-
nExpl where the two major differences are: i) PgExpl provides solely
explanations in terms of subgraph structures, neglecting explanations
in terms of node features; ii) instead of directly optimizing continuous
edge and features masks as done by GnnExpl, it uses Gradient Descend
to train a MLP which, given the two concatenated node embeddings
[X

(t)
i ||X(t)

j ], predicts the likelihood of the edge (i, j) being a relevant
edge.

PgmExpl (Surrogate) [80]: PgmExpl builds a surrogate model of the
GNN to explain by building a probabilistic graphical model. Random
node features perturbations are applied to the given instance and, for
each perturbation, the algorithm records the influence of the perturba-
tion to the final prediction. After a number of perturbations, a dataset
is generated and used to learn an interpretable Bayesian network which
serves as final explanation [80].

3 Evaluation details and preprocessing

Each of the scores or metrics is computed for a specific instantiation of a
dataset with nc ∈ N classes, a class c ∈ {0, 1, . . . , nc − 1}, a model, and an
explainer. We thus assume that these four are fixed in the following, and
we stress that the same computation has to be repeated for each of these
configurations. Moreover, we remark that the metrics are computed on the
training set alone, as we need access to the labels of the graphs or nodes.
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Name Category Task Mask type
GradExplNode Gradient Graph/Node Node
GradExplEdge Gradient Graph/Node Edge

GuidedBp Gradient Graph/Node Node
IgEdge Gradient Graph/Node Edge
IgNode Gradient Graph/Node Node
Cam Gradient Graph/Node Node

GradCam Gradient Graph/Node Node
GnnExpl Perturbation Graph/Node Edge
PgExpl Perturbation Graph/Node Edge
PgmExpl Surrogate Graph/Node Node

Table 1. Summary of explainers analyzed in this work. The columns Task represents
to which downstream task the explainer can be applied to, while Mask type represents
whether the explainer returns explanations in terms of entire node importance, single
node features importance, or edge importance.

We assume to have a graph G of class y = c, and denote as g the trained
GNN. We have GNNs which output a class probability prediction vector in
form of a soft max, so that the predicted class probabilities sum to 1. Since
we are considering one class at a time, in the following we assume to be
working with only the output’s entry corresponding to class c.
Only the graphs which are correctly classified by the trained GNN are con-
sidered further and run through the explainer, which returns a corresponding
soft explanation mask Gexp, which is a copy of the original graph with asso-
ciated node or edge weights (for node- or edge-based explainers).
Before computing the metrics, these soft-mask explanations are processed
and filtered by means of three operations:
• Conversion: Edge masks are converted to node masks by assigning to

each node the weight given by the average of the weights of its incident
edges. This operation makes it easier to compare the scores of edge-based
and node-based explainers, and we choose to use node masks since node-
based explainers are more common in our taxonomy (see Section 1).

• Filtering: For each mask we check the difference between the largest and
the smallest weight. If the difference is below a tolerance τ = 10−3, we
discard the graph or node for the given combination of dataset, class,
model, and explainer (the graph or node may still pass the filter for
other settings). The goal of this filter is to discard poorly informative
explanations.

• Normalization: The remaining explanation masks are normalized in-
stance by instance, so that each explanation has weights in [0, 1]. This
has the effect of making the computation of the metric uniform across
the entire dataset, and comparing its values to those obtained with other
settings.

After these operations have been applied, we compute the metrics as follows.
We formalize each metric as it is computed on a single instance (a graph



30 A. Longa et al.

or a node), and remark that the overall values of plausibility or fidelity
for the entire (dataset, class, model, explainer)-configuration is obtained by
averaging over these single instances.

Sufficiency The fidelity sufficiency Fsuf [61] is the difference in the predicted
probability when computed on the graph and on the explanation. Since the
explanation is a soft mask, we fix a number of levels Nt ∈ N and apply
an incremental thresholding with Nt + 1 threshold levels tk = k/Nt, k =
0, . . . , Nt, where we define Gexp(tk) to be the hard mask explanation derived
from Gexp with threshold tk.
Using Nt = 100, we define the metric by

Fsuf =
1

Nt − 1

Nt−1∑
k=1

(g(G)− g(Gexp(tk))) ,

i.e., the average change in prediction over all the possible hard masks.
This metric may possibly be negative, and a smaller value indicates a better
result. This indeed may happen only if the explanation provides an higher
probability for the correct class than the entire graph, and thus the explana-
tion mask manages to filter unnecessary parts of the graph. For this reason
this metric is harder to compare to other scores, so when used alone we
transform it to a renormalized metric F ′

suf , which has values in [0, 1] and
where F ′

suf = 1 means a good quality of the explanation. The normalization
takes into account the number of classes nc, and is defined for p = nc−1

nc
as

F ′
suf = 1− Fsuf + p

1 + p
=

nc

2nc − 1
(1− Fsuf ).

Comprehensiveness The fidelity comprehensiveness Fcom [61] is instead the
difference in the predicted probability when computed on the graph and on
the complement of the explanation. Proceeding as in the computation of the
sufficiency, we define

Fcom =
1

Nt − 1

Nt−1∑
k=1

(g(G)− g(G \Gexp(tk))) ,

where now G \Gexp(tk) is the complement of the hard mask Gexp(tk). This
metric may as well assume negative values, but good explanation have in
this case Fcom close to 1. (the complement of the explanation provides low
probability).


