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Abstract. While instance-level explanation of GNN is a well-studied
problem with plenty of approaches being developed, providing a global
explanation for the behaviour of a GNN is much less explored, despite
its potential in interpretability and debugging. Existing solutions either
simply list local explanations for a given class, or generate a synthetic
prototypical graph with maximal score for a given class, completely miss-
ing any combinatorial aspect that the GNN could have learned. In this
work, we propose GLGExplainer (Global Logic-based GNN Explainer),
the first Global Explainer capable of generating explanations as arbitrary
Boolean combinations of learned graphical concepts. GLGExplainer is a
fully differentiable architecture that takes local explanations as inputs
and combines them into a logic formula over graphical concepts, repre-
sented as clusters of local explanations. Contrary to existing solutions,
GLGExplainer provides accurate and human-interpretable global expla-
nations that are perfectly aligned with ground-truth explanations (on
synthetic data) or match existing domain knowledge (on real-world data).
Extracted formulas are faithful to the model predictions, to the point of
providing insights into some occasionally incorrect rules learned by the
model, making GLGExplainer a promising diagnostic tool for learned
GNNs.

Keywords: Graph Neural Networks - Explainability.

1 Introduction & Related Work

Graph Neural Networks (GNNs) have become increasingly popular for predictive
tasks on graph structured data. However, as many other deep learning models,
their inner working remains a black box. The ability to understand the reason
for a certain prediction represents a critical requirement for any decision-critical
application, thus representing a big issue for the transition of such algorithms
from benchmarks to real-world critical applications.
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Over the last years, many works proposed Local Explainers [35/2113830126/24]
to explain the decision process of a GNN in terms of factual explanations, often
represented as subgraphs for each sample in the dataset. We leave to [37/18] a
detailed overview about Local Explainers, who recently proposed a taxonomy to
categorize the heterogeneity of those. Overall, Local Explainers shed light over
why the network predicted a certain value for a specific input sample. However,
they still lack a global understanding of the model. Global Explainers, on the
other hand, are aimed at capturing the behaviour of the model as a whole, ab-
stracting individual noisy local explanations in favor of a single robust overview
of the model. Nonetheless, despite this potential in interpretability and debug-
ging, little has been done in this direction. GLocalX [25] is a general solution to
produce global explanations of black-box models by hierarchically aggregating
local explanations into global rules. This solution is however not readily appli-
cable to GNNs as it requires local explanations to be expressed as logical rules.
Yuan et al. [36] proposed XGNN, which frames the Global Explanation problem
for GNNs as a form of input optimization [32], using policy gradient to gen-
erate synthetic prototypical graphs for each class. The approach requires prior
domain knowledge, which is not always available, to drive the generation of valid
prototypes. Additionally, it cannot identify any compositionality in the returned
explanation, and has no principled way to generate alternative explanations for
a given class. Indeed, our experimental evaluation shows that XGNN fails to
generate meaningful global explanations in all the tasks we investigated.

Concept-based Explainability [I3IT0J34] is a parallel line of research where
explanations are constructed using “concepts” i.e., intermediate, high-level and
semantically meaningful units of information commonly used by humans to ex-
plain their decisions. Concept Bottleneck Models [15] and Prototypical Part
Networks [4] are two popular architectures that leverage concept learning to
learn explainable-by-design neural networks. In addition, similarly to Concept
Bottleneck Models, Logic Explained Networks (LEN) [6] generate logic-based
explanations for each class expressed in terms of a set of input concepts. Such
concept-based classifiers improve human understanding as their input and output
spaces consist of interpretable symbols [SIITO/I5]. Those approaches have been
recently adapted to GNNs [3919]. However, these solutions are not conceived for
explaining already learned GNNs.

Our contribution consists in the first Global Explainer for GNNs which )
provides a Global Explanation in terms of logic formulas, extracted by combining
in a fully differentiable manner graphical concepts derived from local explana-
tions; 1) is faithful to the data domain, i.e., the logic formulas, being derived
from local explanations, are intrinsically part of the input domain without re-
quiring any prior knowledge. We validated our approach on both synthetic and
real-world datasets, showing that our method is able to accurately summarize
the behaviour of the model to explain in terms of concise logic formulas.
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2 Background

2.1 Graph Neural Networks

Given a graph G = (V,€) with adjacency matrix A where A;; = 1 if there
exists an edge between nodes i and j, and a node feature matrix X € RIVI*"
where X is the r-dimensional feature vector of node i, a GNN layer aggregates
the node’s neighborhood information into a d-dimensional refined representation
H e RIVI*4 The most common form of aggregation corresponds to the GCN [14]
architecture, defined by the following propagation rule:

H*' = o(D~2 AD~ 2 H*W¥) (1)

where A = A+ 1, D is the degree matrix relative to A, o an activation function,
and W € RF*F is a layer-wise learned linear transformation. However, the form
of Eq[I]is heavily dependent on the architecture and several variants have been
proposed [T4128/1T]

2.2 Local Explainability for GNNs

Many works recently proposed Local Explainers to explain the behaviour of a
GNN [37]. In this work, we will broadly refer to all of those whose output can
be mapped to a subgraph of the input graph [3512TUI38I30126l24]. For the sake of
generality, let LEXP(f,G) = G be the weighted graph obtained by applying the
local explainer LEXP to generate a local explanation for the prediction of the
GNN f over the input graph G, where each Aij relative to G is the likelihood
of the edge (7, j) being an important edge. By binarizing the output of the local
explainer G with threshold 6 € R we achieve a set of connected components G;
such that Ui G; C Q . For convenience, we will henceforth refer to each of these
G, as local explanation.

3 Proposed Method

The key contribution of this paper is a novel Global Explainer for GNNs which
allows to describe the behaviour of a trained GNN f by providing logic formulas
described in terms of human-understandable concepts (see Fig. . In the process,
we use one of the available Local Explainers [35I2TI38I30126/24] to obtain a local
explanation for each sample in the dataset. We then map those local explanations
to some learned prototypes which will represent the final high-level concepts (e.g.
motifs in a graph). Finally, for the formulas extraction, we input the vector of
concept activations to an Entropy-based LEN (E-LEN) [2I7] which is trained to
match the predictions of f. In the following, we will describe every step in more
detail.

Local Explanations Extraction: The first step of our pipeline consists in
extracting local explanations. In principle, every Local Explainer whose out-
put can be mapped to a subgraph of the input sample is compatible with
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Fig. 1. Illustration of the proposed method.

our pipeline [352TI38)30/2624]. Nonetheless, in this work, we relied on PG-
Explainer [21] since it allows the extraction of arbitrary disconnected motifs as
explanations and it gave excellent results in our experiments. The result of this
preprocessing step consists in a list D of local explanations, which are provided
as input to the GLGExplainer architecture. More details about the binarization
are available in Section 2
Embedding Local Explanations: The following step consists in learning
an embedding for each local explanation that allows clustering together function-
ally similar local explanations. This is achieved with a standard GNN h which
maps any graph G into a fixed-sized embedding h(G) € RY. Since each local
explanation G is a subgraph of an input graph G, in our experiments we used
the original node features of the dataset. Note, however, that those features can
be arbitrarily augmented to make the aggregation easier. The outcome of this
aggregation consists in a set E = {h(G), VG € D} of graph embeddings.
Concept Projection: Inspired by previous works on prototype learning
[16l5], we project each graph embedding e € E into a set P of m prototypes
{p; € RYi=1,...,m} via the following distance function:
2 2
d(p;, e) = softmax (log('epl”H),...,lo (||epm||+1)) (2)
le = p1l]* +e€ le=pml?*+€"/;

Prototypes are initialized randomly from a uniform distribution and are learned
along with the other parameters of the architecture. As training progresses,
the prototypes will align as prototypical representations of every cluster of lo-
cal explanations, which will represent the final groups of graphical concepts.
The output of this projection is thus a set V. = {v,, Ve € E} where v, =
[d(p1,€),..,d(pm,€)] is a vector containing a probabilistic assignment of graph
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embedding e (thus the local explanation that maps to it) to the m concepts, and
will be henceforth referred to as concept vector.

Formulas Learning: The final step consists of an E-LEN, i.e., a Logic Ex-
plainable Network [6] implemented with an Entropy Layer as first layer [2]. An
E-LEN learns to map a concept activation vector to a class while encouraging a
sparse use of concepts that allows to reliably extract Boolean formulas emulat-
ing the network behaviour. We train an E-LEN to emulate the behaviour of the
GNN f feeding it with the graphical concepts extracted from the local expla-
nations. Given a set of local explanations G ...G,, for an input graph G; and
the corresponding set of the concept vectors vy ...v,,, we aggregate the concept
vectors via a pooling operator and feed the resulting aggregated concept vec-
tor to the E-LEN, providing f(G;) as supervision. In our experiments we used
a max-pooling operator. Thus, the Entropy Layer learns a mapping from the
pooled concept vector to (i) the embeddings z (as any linear layer) which will be
used by the successive MLP for matching the predictions of f. (ii) a truth table
T explaining how the network leveraged concepts to make predictions for the
target class. Since the input pooled concept vector will constitute the premise in
the truth table T', a desirable property to improve human readability is discrete-
ness, which we achieve using the Straight-Through (ST) trick used for discrete
Gumbel-Softmax Estimator [12]. In practice, we compute the forward pass dis-
cretizing each v; via argmaz, then, in the backward pass to favor the flow of
informative gradient we use its continuous version.

Supervision Loss: GLGExplainer is trained end-to-end with the following
loss:

L= Ly + )\1LR1 + )\2LR2 (3)

where L, corresponds to a Focal BCELoss [I7] between the prediction of our
E-LEN and the predictions to explain, while Lr; and Lgo are respectively aimed
to push every prototype p; to be close to at least one local explanation and to
push each local explanation to be close to at least one prototype [16]. The losses
are defined as follows:

Lgurr = —y(1 —p)7logp — (1 —y)p” log(1 — p) (4)
1 & _
Lp = — in||p; — h(G)|? 5
R m;glelgllpj @l (5)
1 _
Lpy = — min C— h(Q)|? 6
R2 |D|%§:Dje[1,m}|p] @l (6)

where p and  represent respectively the probability for positive class pre-
diction and the focusing parameter which controls how much to penalize hard
examples.

4 Experiments

We conducted an experimental evaluation on synthetic and real-world datasets
aimed at answering the following research questions:
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— Q1: Can GLGExplainer extract meaningful Global Explanations?
— Q2: Can GLGExplainer extract faithful Global Explanations?

The source code of GLGExplainer, including the extraction of local expla-
nations, as well as the datasets and all the code for reproducing the results is
made freely available onlineﬂ

4.1 Datasets

We tested our proposed approach on three datasets, namely:

BAMultiShapes: BAMultiShapes is a newly introduced extension of some
popular synthetic benchmarks [35] aimed to assess the ability of a Global Ex-
plainer to deal with logical combinations of concepts. In particular, we created
a dataset composed of 1,000 Barabasi-Albert (BA) graphs with attached in ran-
dom positions the following network motifs: house, grid, wheel. Class 0 contains
plain BA graphs and BA graphs enriched with a house, a grid, a wheel, or the
three motifs together. Class 1 contains BA graphs enriched with a house and a
grid, a house and a wheel, or a wheel and a grid.

Mutagenicity: The Mutagenicity dataset is a collection of 4,337 molecule
graphs where each graph is labelled as either having a mutagenic effect or not.
Based on [§], the mutagenicity of a molecule is correlated with the presence of
electron-attracting elements conjugated with nitro groups (e.g. NO2). Moreover,
compounds with three or more fused rings tend to be more mutagenic than those
with one or two. Most previous works on this dataset have focused on finding
the functional group NO2, since most of them struggle in finding compounds
with more than two carbon rings.

Hospital Interaction Network (HIN): HIN is a new real-world bench-
mark proposed in this work. It represents the third-order ego graphs for doctors
and nurses in a face-to-face interaction network collected in an hospital [27].
There are four types of individuals in the network: doctors (D), nurses (N), pa-
tients (P), and administrators (A). Such typologies constitute the feature vector
for each node, represented as one-hot encoding. Each ego network is an instance,
and the task is to classify whether the ego in the ego network is a doctor or a
nurse (without knowing its node features, which are masked). More details about
the dataset construction are available in the Appendix.

For Mutagenicity we replicated the setting in the PGExplainer paper [21],
while for BAMultiShapes and HIN we trained until convergence a 3-layer GCN.
Details about the training of the networks and their accuracies are in the Ap-
pendix.

4.2 Evaluation Metrics

In order to show the robustness of our proposed methodology, we have evalu-
ated GLGExplainer on the following three metrics, namely: ¢) FIDELITY, which

4 https://github.com/steveazzolin/gnn_logic_global_expl
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represents the accuracy of the E-LEN in matching the predictions of the model
f to explain; ii) ACCURACY, which represents the accuracy of the formulas
in matching the ground-truth labels of the graphs; iii) CONCEPT PURITY,
which is computed for every cluster independently and measures how good the
embedding is at clustering the local explanations. A more detailed description of
those metrics is available in the Appendix. For BAMultiShapes and Mutagenic-
ity, every local explanation was annotated with its corresponding ground-truth
motif, or Others in case it did not match any ground-truth motif. For HIN, since
no ground truth explanation is available, we labeled each local explanation with
a string summarizing the users involved in the interaction (e.g., in a local ex-
planation representing the interaction between a nurse and a patient, the label
corresponds to NP). Since labelling each possible combination of interactions be-
tween 4 types of users would make the interpretation of the embedding difficult,
we annotated the most frequent seven (D, N, NA, P, NP, MN, MP), assigning
the rest to Others. Note that such unsupervised annotation may negatively im-
pact the resulting Concept Purity since it ignores the correlation between similar
but not identical local explanations.

4.3 Experimental Results

In this section we will go through the experimental results with the aim of
answering the research questions defined above. Table [I] presents the raw for-
mulas extracted by the Entropy Layer where, to improve readability, we have
dropped negated literals from clauses. This means that for each clause in a for-
mula, missing concepts are implicitly negated. Those formulas can be further
rewritten in a more human-understandable format after inspecting the represen-
tative elements of each cluster as shown in Figure [2] where for each prototype
p; the local explanation G such that G = argmazg cpd(p;, h(G")) is reported.
The resulting Global Explanations are reported in Figure |3] where we included
a qualitative comparison with the global explanations generated by XGNN [36],
the only available competitor for global explanations of GNNs. Finally, Table [2]
shows the results over the three metrics as described in Section Note that
XGNN is not shown in the table as it cannot be evaluated according to these
metrics.

BAMultiShapes

- A ~ S
S K g PPN /N /\/\/
N/ = K ] [ 777
. <57 — N — \\/
BA WHEEL MIX GRID HOUSE GRID
R /C Pl/.\ R Ego R &s P o P &

c d %o o d o d

MIX NO, NURSES PATIENTS DOCTORS NURSES + PATIENTS
(+ ADM) (+ NUR/PAT)

Fig. 2. A representative element for each concept. For completeness, in the Appendix
we report five random instances for each concept.
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Table 1. Raw formulas as extracted by the Entropy Layer along with their test Accu-
racy. Each formula was rewritten to just keep positive literals.

Dataset Raw Formulas Accuracy
. 1 PyV P3V P VP,V P
BAMultiShapes Classo <= Pov Py v PV PV Ps
(P4 A P3) \ (P5 AN P4) Vv (P3 VAN Pl) \ (P5 AN Pl) A\ 0.98
Class, <= (PaAP)V (PAAP)V (PLAP)V (PsAP2)V
Py
.. 1 P Py A P,
Mutagenicity Classy <= P v (Po A P1) 0.83
Class; <— Py
HIN Classy <= Py V Py V Ps 0.84
Class; <— P,

Table 2. Mean and standard deviation for Fidelity, Accuracy, and Concept Purity
computed over 5 runs with different random seeds. Since the Concept Purity is com-
puted for every cluster independently, here we report mean and standard deviation
across clusters over the best run according to the validation set.

Fidelity Accuracy Test Concept
Train Test Train Test Purity

BAMultiShapes 0.96 + 0.03 0.96 £ 0.03 0.92 £ 0.03 0.96 4+ 0.03  0.87 £ 0.24
Mutagenicity 0.82 £ 0.00 0.81 £ 0.01 0.78 £ 0.00 0.79 &+ 0.01 1.00 £ 0.00
HIN 0.89 £ 0.00 0.85 £ 0.02 0.86 £ 0.01 0.85 & 0.02 0.78 & 0.18

Dataset

Q1: Can GLGExplainer extract meaningful Global Explanations?
The building blocks of the Global Explanations extracted by GLGExplainer are
the graphical concepts that are learned in the concept projection layer. Figure
(] clearly shows that each concept represents local explanations with specific
characteristics, thus achieving the desired goal of creating interpretable concepts.
Note that clusters corresponding to concepts are on average quite homogeneous
(see Concept Purity in Table 7 and the concept representatives in the figure
are faithful representations of the instances in their corresponding cluster. See
the Appendix for further details, where we report five random instances for
each concept. It is worth noting that this clustering emerges solely based on
the supervision defined by Eq [3] while no specific supervision was added to
cluster local explanations based on their similarity. This is the reason behind
the emergence of the Miz cluster around ps in the upper part of Figure 2} which
represents all local explanations with at least two motifs that are present solely
in Class 1 of BAMultiShapes.
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Fig. 3. Global explanations of GLGExplainer (ours) and XGNN. For Class 0 of BA-
MultiShapes, XGNN was not able to generate a graph with confidence > 0.5. Note
that for each clause, missing concepts are implicitly negated.

Additionally, as shown in Figure[3] GLGExplainer manages to combine these
building blocks into highly interpretable explanations. The explanation for BA-
MultiShapes almost perfectly matches the ground-truth formula, where the only
difference is the conjunction of all motifs being assigned to Class 1 rather than
Class 0. This however is due to a discrepancy between the ground-truth formula
and what the GNN learned, as will be discussed in the answer to Q2. Note
that the Mix cluster has been rewritten as the conjunction of the shapes it con-
tains when extracting the human-interpretable formulas. For Mutagenesis, the
GLGExplainer manages to recover the well-known NO2 motif as an indicator of
mutagenicity (Class 0). It is worth reminding that in all formulas in Figure
negative literals have been dropped from clauses for improved readability. Hav-
ing formulas for Mutagenesis only two concepts, this implies that the formula
for Class 0 actually represents NO2 itself (NO2 A OTHERS) Vv (NO2 A —
OTHERS) <= NO2). For HIN, the global explanations match the common
belief that nurses tend to interact more with other nurses or with patients, while
doctors tend to interact more frequently with other doctors (or patients, but less
frequently than nurses).

Conversely to our results, XGNN [36] fails to generate explanations matching
either the ground truth or common belief about the dataset in most cases, while
failing to generate any graph in others.
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Q2: Can GLGExplainer extract faithful Global Explanations?

The high Accuracy reported in Table [2] shows that the extracted formulas are
correctly matching the behaviour of the model in most samples, while being
defined over fairly pure concepts as shown by the Concept Purity in the same
Table. It is worth highlighting that GLGExplainer is not simply generating an
explanation for the ground-truth labeling of the dataset, bypassing the GNN
it is supposed to explain, but it is indeed capturing its underlying predictive
behaviour. This can be seen by observing that over the training set, Fidelity is
higher than Accuracy for all datasets. Note that on BAMultiShapes, training
accuracy is lower than test accuracy. The reason for this train-test discrepancy
can be found in the fact that the GNN fails to identify the logical composition of
all three motifs (which are rare and never occur in the test set) as an indicator
of Class 0. This can be seen by decomposing the GNN accuracy with respect to
the motifs that occur in the data (Table [3]), and observing that the accuracy for
the group with all three motifs (All) is exactly zero. Quite remarkably, GLGEx-
plainer manages to capture this anomaly in the GNN, as the clause involving all
three motifs is learned as part of the formula for Class I instead of Class 0, as
shown in Figure [3] The ability of GLGExplainer to explain this anomalous be-
haviour is a promising indication of its potential as a diagnostic tool for learned
GNNs.

Table 3. Accuracy of the model to explain on the train set of BAMultiShapes with
respect to every combination of motifs to be added to the BA base graph. H, G, W
stand respectively for House, Grid, and Wheel.

Class 0 ‘ Class 1

Motifs 0 H G WAIH+GH+ WG+ W
Accuracy (%) 1.01.00.851.00.0 1.0 0.98 1.0

In the rest of this section we show how the number of prototypes, that crit-
ically affects the interpretability of the explanation, can be easily inferred by
trading-off Fidelity, Concept Purity and sparsity, and we provide an ablation
study to demonstrate the importance of the Discretization trick.

Choice of the number of prototypes: The number of prototypes in the
experiments of this section was determined by selecting the smallest m which
achieves satisfactory results in terms of Fidelity and Concept Purity, as mea-
sured on a validation set. Specifically, we aim for a parsimonious value of m to
comply to the human cognitive bias of favoring simpler explanations to more
complex ones [23]. Table 4| reports how different values of m impact Fidelity
and Concept Purity. The number of prototypes achieving the best trade-off be-
tween the different objectives was identified as 6, 2 and 4 for BAMultiShapes,
Mutagenicity, and HIN respectively.
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Table 4. Fidelity and Concept Purity as functions of the number m of prototypes in
use. Results are referred to the validation set.

Metric Dataset m=2m=4m=6m=2_8
BAMultiShapes 0.93 0.93 0.95 0.95

Fidelity Mutagenicity 0.83 0.83 0.84 0.79
HIN 0.88 0.89 0.89 0.88

BAMultiShapes 0.42 0.73 0.84 0.91
Concept Purity Mutagenicity 097 099 096 0.99
HIN 0.45 080 0.77 0.70

Role of the Discretization trick: The Discretization trick was introduced
in Section [3| to enforce a discrete prototype assignment, something essential for
an unambiguous definition of the concepts on which the formulas are based. We
ran an ablation study to evaluate its contribution to the overall performance of
GLGExplainer. Figure [4| (left) shows the reduction in concept vector entropy
achieved by GLGExplainer with the discretization trick (red curve, zero entropy
by construction) as compared to GLGExplainer with the trick disabled (orange
curve). Figure [4] (middle) reports the Fidelity over the training epochs for the
two variants. The figure shows the effectiveness of the discretization trick in
boosting Fidelity of the extracted formulas, which is more than double the one
achieved disabling it. We conjecture that the reason for this behaviour is the
fact that the discretization trick forces the hidden layers of the E-LEN to focus
on the information relative to the closest prototype, ignoring other positional
information of local explanations. Thus, the E-LEN predictions are much better
aligned with the discrete formulas being extracted, and indeed the Accuracy of
the formulas matches the Fidelity of the E-LEN, which is shown in the right plot.
On the other hand, GLGExplainer without discretization has a high Fidelity but
fails to extract highly faithful formulas. Note that simply adding an entropy loss
over the concept vector to the overall loss (Eq. fails to achieve the same
performance obtained with the discretization trick.

5 Conclusion

We introduced GLGExplainer, the first Global Explainer for GNNs capable of
generating explanations as logic formulas, represented in terms of learned human-
interpretable graphical concepts. The approach is inherently faithful to the data
domain, since it processes local explanations as extracted by an off-the-shelf Lo-
cal Explainer. Our experiments showed that GLGExplainer, contrary to existing
solutions, can faithfully describe the predictive behaviour of the model, being
able to aggregate local explanations into meaningful high-level concepts and
combine them into formulas achieving high Fidelity. GLGExplainer even man-
aged to provide insights into some occasionally incorrect rules learned by the
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Fig. 4. Impact of the Discretization Trick. Each run is halted with early stopping on
the validation set.

model. We believe that this approach can constitute the basis for investigating
how GNNs build their predictions and debug them, which could substantially
increase human trust in this technology.

The proposed GLGExplainer is inherently faithful to the data domain since it
processes local explanations provided by a Local Explainer. However, the quality
of those local explanations, in terms of representativeness and discriminability
with respect to the task-specific class, has a direct effect on the Fidelity. If the
generated concept vector does not exhibit any class-specific pattern, then the
E-LEN will not be able to emulate the predictions of the model to explain.
Despite being a potential limitation of GLGExplainer, this can actually open
to the possibility of using the Fidelity as a proxy of local explanations quality,
which is notoriously difficult to assess. We leave this investigation to future
work. Despite tailoring our discussion on graph classification, our approach can
be readily extended to any kind of classification task on graphs, provided that
a suitable Local Explainer is available.
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1 Datasets details

While BAMultiShapes and Mutagenicity were already described in detail in
Section here we report more details about the newly introduced dataset
for graph Explainability. Figure presents some random examples for each
dataset, with their extracted explanation in bold.

HIN: Hospital Interaction Networks is a new real benchmark that we pro-
pose in this work. The dataset has been used for several research[29J20/19]. It
was collected using wearable sensors, equipped with radio-frequency identifica-
tion devices (RFIDs) capturing face-to-face interactions. The devices record an
interaction if and only if there is at least one exchanged signal within 20 sec-
onds. The dataset was collected by Sociopatterns collaboratiorEI in the geriatric
ward of a university hospital [27] in Lyon, France, over four days in December
2010. The individuals belong to four categories: medical doctors (M), nurses (N),
administrative staff (A), and patients (P).

Since the interaction network G7 evolves over time, we convert the temporal
network into a sequence of graph snapshots, aggregating interactions every five
minutes (GT = [G1,Ga,...,Gn]). For each static graph G;, we extract the ego
graph with radius 3 centered in each doctor and each nurse, obtaining a set of
ego graphs. A GNN is trained in classifying between ego networks of doctor and
nurse, where the feature of each ego node is masked.An illustrative example of
this procedure is shown in Figure [T} In particular, the top of the figure shows
a static snapshot (G;) of the temporal graph. In the middle, we show three ego
graphs (with a radius equal to 2 for convenience) centered on two doctors (D
and Ds) and a nurse (N;) respectively. Finally, the ego node features are masked,
as depicted at the bottom of Figure [I} At the end of this extraction procedure,
we obtain 880 and 2009 ego graphs for doctors and nurses respectively. To avoid

4 http://www.sociopatterns.org/
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class imbalance, we sub-sample the nurse class, obtaining a balanced dataset of
1760 graphs.

Graph snapshot (G,)

o]
|

Ego graph <g‘t°1’) Ego graph <gi°2’) Ego graph (g‘tNl’)
| O .
| | |

Fig. 1. Extraction of ego graphs in Hospital Interaction Network (HIN).

2 Implementation details

Local Explanations Extraction: As discussed in Section [3] we used PGEx-
plainer [2I] as the Local Explainer. However, we modified the procedure for dis-
cretizing weighted graphs into a set of disconnected motifs. Indeed, the authors
in [2I] limited their analysis to graphs that contained the ground truth motifs
and proposed to keep the top-k edges as a rule-of-thumb for visualization pur-
poses. For Mutagenicity, over which PGExplainer was originally evaluated, we
simply selected the threshold 6 that maximises the F'1 score of the local explainer
over all graphs, including those that do not contain the ground-truth motif. For
the novel datasets BAMultiShapes and HIN, we adopted a dynamic algorithm to
select € that does not require any prior knowledge about the ground truth motifs.
This algorithm resembles the elbow-method, i.e., for each local explanation sort
weights in decreasing order and chooses as threshold the first weight that differs
by at least 40% from the previous one. We believe that threshold selection for
Local Explainers is a fundamental problem to make local explainers actionable,
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but it is often left behind in favor of top-k selections where k is chosen based
on the ground-truth motif. In the Appendix we show some examples for each
dataset along with their extracted explanations.

GLGExplainer: We implemented the Local Explanation Embedder h as a
2-layers GIN [33] network for each dataset except HIN, for which we found a
GATV2 [3] to provide better performance as the attention mechanism allows
the network to account for the relative importance of the type of neighboring
individuals. All layers consist of 20 hidden units followed by a non-linear combi-
nation of max, mean, and sum graph pooling. We set the number of prototypes
m to 6, 2, and 4 for BAMultiShapes, Mutagenicity, and HIN respectively (see
Section for an analysis showing how these numbers were inferred), keeping
the dimensionality d to 10. We trained using ADAM optimizer with early stop-
ping and with a learning rate of 1le~3 for the embedding and prototype learning
components and a learning rate of 5e=* for the E-LEN. The batch size was set to
128, the focusing parameter v to 2, while the auxiliary loss coefficients A\; and A
were set respectively to 0.09 and 0.00099. The E-LEN consists of an input En-
tropy Layer (R™ — R!?), a hidden layer (R'® — R%), and an output layer with
LeakyReLU activation function. We turned off the attention mechanism encour-
aging a sparse use of concepts from the E-LEN, as the end-to-end architecture
of GLGExplainer already promotes the emergence of predictive concepts, and
the discretization step preceding the E-LEN encourages each concept activation
vector to collapse on a single concept. All these hyper-parameters were identified
via cross-validation over the training set.

Training the GNN f In this section we will provide more details about the
training of the GNN to explain f. While for Mutagenicity we limited to repro-
duce the results presented in [21I] both in terms of model to explain (a 3 layers
GCN [I4]) and local explanations, for BAMultiShapes and HIN we trained our
own networks. For BAMultiShapes we adopted a 3-layers GCN (20-20-20 hidden
units) with mean graph pooling for the final prediction, whilst for HIN we em-
ployed a 3-layers GCN (20-20-20 hidden units) with non-linear combination of
sum, mean, and max graph pooling. The final model performances are reported
in Table [} In both cases we used ADAM optimizer, training until convergence
and using the validation set to select the best epoch.

Explainers In this work we relied mainly on two off-the-shelf explainers, namely,
PGExplainer [2I] and XGNN [36]. Here we report some details about their usage.

PGExplainer: For Mutagenicity and BAMultiShapes, we used the original
implementation as provided by [2I]. For BAMultiShapes we changed to orig-
inal hyper-parameters to {epochs:5, args.elr=0.007, args.coff_t0=1.0,
args.coff_size=0.0005 args.coff_ent=0.000}. For HIN we instead used the
PyTorch implementation provided by [1], using as custom hyper-parameters
{t0=1, t1=1, max_epochs=30}. Finally, for BAMultiShapes and HIN, for which
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we extracted our own local explanations, we trained PGExplainer on the train
split of the original dataset. It is worth mentioning that for HIN, after the local
explanations extraction, we removed every local explanation not containing the
ego node.

XGNN: The official code provided hereﬂ is specifically tailored for gener-
ating explanations for the Mutagenicity dataset. For the other two, despite the
algorithm accepting an heavy optimization for the task at hand (like defining
custom rewards functions for each task), we made minimal changes to the archi-
tecture and to the original hyper-parameters in order not to input any a-priori
knowledge. For HIN, specifically, we adapted the node type generation to match
the node types of the dataset, and the custom check_validity function to de-
fine whether the generated graph is valid, i.e., it must contain a single ego node.
For what concern the evaluation metrics presented in Section [I.2] since XGNN
and GLGExplainer return explanations in two substantially different formats,
we could not compare quantitatively the explanations provided by XGNN with
ours. Thus, a direct comparison of XGNN under our metric is not possible.

Table 1. Accuracies of the different models to explain.

Split BAMultiShapes Mutagenicity HIN

Train 0.94 0.87 0.92
Val 0.94 0.86 0.87
Test 0.99 0.86 0.86

Choosing A\; and A2 In Eq[3]we introduced the two parameters regulating the
importance of the two auxiliary losses described in Section [3] Those parameters
were kept fixed to, respectively, 0.09 and 0.00099 for all the experiments and
were chosen via cross validation. In Figure 2| we show how the Fidelity over the
validation set changes with different combinations of such hyper-parameters.

2.1 Local Explanations Embedding

For layout reasons, we did not report in the main paper the 2D embedding
plot for each dataset. However, we believe it is of great interest since it gives a
visual sense of how similar local explanations get clustered in the same concept.
Thus, we report in Figure [6] the 2D plot of local explanations embedding for
BAMultiShapes, Mutagenicity, and HIN.

In addition to this, we report a graphical materialization of five random
samples for each concept, in Figures [7{9]

® https://github.com/divelab/DIG/tree/main/dig/xgraph/XGNN
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Fig. 2. How does the selection of A1 and A2 impact Fidelity?
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Fig. 3. Random examples of input graphs along with their explanations in bold as
extracted by PGExplainer, for BAMultiShapes.
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Fig. 4. Random examples of input graphs along with their explanations in bold as
extracted by PGExplainer, for Mutagenicity
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Fig. 5. Random examples of input graphs along with their explanations in bold as
extracted by PGExplainer, for HIN



22 S. Azzolin et al.
local explanations embeddings prototype assignments
« house T 4 06 .0‘
grid . ° “9 . 0;. K3
- 2 04 - X
«  wheel ol o 3 Sige’ o e sty o O
+ ba R ° ". 2 ° 02 " « pl
«  house+grid 0 00 s 8 J LI
« house+wheel e .:>.p4..5£5 .‘o‘ B e p3
wheel+grid . “ ‘;bl o2 hd s s p4
e all M 04 N ° P
o s ) os o o ED ) s )
principal comp. 1
local explanations embeddings prototype assignments
;
o7 Y 08 N . oo
Others e 06 L s pl
04 . . 04 ° . . .
02 " . - 0.2 . . . L
0.0 0.0 o .
-0.2 -0.2 N
Iy ‘)F]- 04 LI
o ED 70 ) ) o o5 o0 [ ) s
principal comp. 1
local explanations embeddings prototype assignments
o 08 o
~° M ﬂp3 wt * po
s N L . 06 _'? H . pl
£+ NA Pt ‘e . 0s] & * . s p2
S par e LR 9. ] et L . p3
T. NP s° . . WP, 0% . .
£ < . ° o2 .
= MP “"s.v;'.. .o "°s.~$’.. .o
« OTHERS 13 . -04 13 .

Fig. 6. 2D PCA-reduced embedding for, respectively, BAMultiShapes and Mutagenic-

ity and HIN

Py

BA -

Py

Wheel y
<

P>

Mix <

P3

: I - S

Grid — — L
/ / / A /

Py .

House e — \Va

P \\\ \> AN

5

Grid /7 [T Ve
[~ [ [

_ S~
<\ <
/\/\/ \/,/"
== S S
N P
<’7§> ~Z >
<_ <
. —
< N4
ey
L 77

Fig. 7. Five random local explanations for each concept in BAMultiShapes.



Title Suppressed Due to Excessive Length 23

Po
Others

e e T
PN TN

Fig. 8. Five random local explanations for each concept in Mutagenicity.

e

Nurses N N Eg N
(+ Adm.) / >go / O\N >go
N Eg N/ A
go go P go
Patlents /g/ / / \P
P P Egn/ P
Doctors go  Ego D go
(+ Nur./Pat. / / \J/D\ / D/
N D Eg D/
urses . . e /P
R e
P
Ego/ Egc/ P P/ Ego/

Fig. 9. Five random local explanations for each concept in HIN.



24 S. Azzolin et al.

2.2 Evaluation Metrics

Here we will describe in more detail the metrics briefly introduced in Section

— Fidelity measures the accuracy between the prediction of the E-LEN and
the one of the GNN to explain. It is computed as the accuracy between the
class predictions of the E-LEN and the GNN f.

— Accuracy [2] represents how well the learned formulas can correctly predict
the class labels. To compute this metric, we treat the final formulas as a
classifier that given an input concept vector predicts the class corresponding
to the clause evaluated to true. In the cases in which either no clause or more
clauses of different classes are evaluated to be true, the sample is always
considered as wrongly predicted.

— Concept Purity is computed for every cluster independently and measures
how good the embedding is at clustering the local explanations. It was first
proposed in [22] for evaluating concept representations by means of graph
edit distance. However, since the computation of the graph edit distance is
expensive, in our work we adapted such metric to exploit the annotation of
local explanations as described in Section [£.2] Specifically, in our cases such
annotation corresponds to the typology of the motif represented by the local
explanation. The computation of the metric can be summarized by:

count_most__ frequent label(C;)

| M)

Concept Purity(C;) =

where C; corresponds to the cluster having p; as prototype (i.e., the cluster
containing every local explanation associated to prototype p; by the distance
function d(.,.) described in Section [3)). count_most_ frequent_label(C;)
instead returns the number of local explanations annotated with the most
present label in cluster C;. The Concept Purity results reported in Table [2]
are computed by taking the mean and the standard deviation across the m
clusters.

2.3 Entropy-based Logic Explained Networks

Concept-based classifiers [15] are a family of machine learning models predict-
ing class memberships from the activation scores of & human-understandable
categories, i.e., ¢ : C = ), where C C [0, 1]*. Concept-based classifiers improve
human understanding as their input and output spaces consist of interpretable
symbols [BIITO/T5]. Logic Explained Networks (LENSs [6]) are concept-based neu-
ral models providing for each class i simple logic explanations ¢' : C +— {0,1}
for their predictions ¢*(¢) € {0,1}. In particular LENs provide concept-based
First-Order Logic (FOL) explanations for each classification task:

Vee C CC: ¢'(¢) < ¢'(2). (2)
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where ¢' is a concept-based formula in disjunctive normal form. The E-LEN
employed in our work corresponds to a LEN with an Entropy Layer [2] as first
layer, which is the responsible for the extraction of the logic formulas. As men-
tioned in Section[2] given that our architecture already promotes by construction
a singleton activation of concepts, the entropy-based regularization described in
[2] promoting a parsimonious activation of the concepts, allowing the E-LEN to
predict class memberships using few relevant concepts only, is removed.

Extraction of logic formulas Considering the removal of the entropy-based
regularization mentioned above, the process of formula extraction can be sum-
marized as follows: given a classification task with r classes, and given a truth
table T for each of the r classes, the I-th row of the resulting table T" is obtained
by concatenating together the [-th input concept activation vector ¢; with the
respective prediction ¢*(¢;):

77 = (alld'(@)) (3)

Then, for every row I, where ¢*(¢;) = 1, concepts in ¢ are connected with the
AND operator resulting in a logic clause where concepts that appear as false in
¢; are negated. Finally, the final formulas in disjunctive normal form for table T
are obtained by connecting every clause with the OR operator. Further details
are available in [2].

Enhancements of GLGExplainer to the E-LEN framework To make
clear the enhancements of our proposed GLGExplainer to the E-LEN frame-
work, note that the original formulation of the E-LEN requires C' to be known.
Indeed, the experiments carried out in [2] were all assuming a known mapping
from the input space to C. In this case, however, since such mapping is not avail-
able, we aim at learning a set of human-understandable concepts. The choice of
learning such concepts from local explanations, rather than generating them
via any graph-generation process, allowed our contribution to be faithful to the
data domain contrary to previous works on Global Explainability for GNNs [36].
Since the E-LEN framework does not provide a principled way for dealing with
the peculiarities of the graph domain, it cannot be directly applied on top of
local explanations. We thus devised the method proposed in Section [3| in order
to aggregate local explanations into clusters of similar subgraphs, with no fur-
ther supervision than the one provided by Eq[3] The experimental evaluation in
Section .3l shows that the learned clusters have indeed a human-understandable
meaning, and the final formulas correctly allow to assess the performances of the
model to explain. On the same vein, the framework proposed in [2] is aimed at
creating an interpretable classifier which can generate logic explanations of its
predictions, resulting in an interpretable-by-design architecture. This is radically
different from our scenario, where we provide explanations of an already trained
model. Finally, given the fact that we removed the entropy-based regularization
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from the original implementation of the Entropy Layelﬂ we are basically restrict-
ing the usage of it to just the principled process of extracting logic formulas from
the truth table 7', introduced in [2].

2.4 Distance function d(.,.)

In Section [3| we presented Eq. [2| as the distance function d(p;,e) to compute a
relative assignment value for the graph embedding e to prototype p;, expressed
as a probability value thanks to the softmax. For convenience, we report again
the mathematical definition below:

d(pi,e) = softmax (log(le_leQH), ..., 0o (||e —pull® + 1)) (4)

le = pal* +e le = pmll? + e

Note that when d(p;,e) has a high activation value for a prototype p;, then
the graph embedding e is very close to prototype p; in the embedding space, thus
meaning that the input graph leading to e exhibit a similar high-level concept
to what p; represents.

Overall, the output of the projection step described in Section [3] is a set
V = {ve, Ve € E} where v, = [d(p1,€),..,d(Pm,€)] is a vector containing a
probabilistic assignment of graph embedding e to the m prototypes.

S https://pypi.org/project /torch-explain/
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