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Egocentric Temporal Neighbourhood Signature (ETNS)
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Egocentric Temporal Neighbourhood Signature (ETNS)
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Complexity: O(dk lOg dk)

d = maximum degree of the graph
k = number of temporal snapshots -1
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How to use ETN?

We can generate a new temporal network!
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Recipe for generating a synthetic network
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Recipe for generating a synthetic network
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Recipe for generating a synthetic network

Generate a provisional layer
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Recipe for generating a synthetic network

Generate a provisional layer
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Recipe for generating a synthetic network

Validate layer connections
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Recipe for generating a synthetic network

Validate layer connections
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Competitors

(Structural Temporal Modeling), based on temporal motifs.

[Purohit, Holder, Chin. Temporal graph generation based on a distribution of
temporal motifs. Proceedings of the 14th International Workshop on Mining and
Learning with Graphs, volume 7, 2018.]

TagGen, based on deep learning.

[Zhou, Zheng, Han, He. A data-driven graph generative model for temporal
interaction networks. Proceedings of the 26th ACM SIGKDD International
L Conference on Knowledge Discovery & Data Mining, 401-411, 2020.]

Dymond (DYnamic MOtif-NoDes Network Generative Model), based on
temporal motifs.

[Zeno, La Fond, Neville. Dymond: Dynamic motif-nodes network generative model.
Proceedings of the Web Conference 2021, 718-729, 2021.]
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Number of interactions
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Results
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Execution Time

Hospital Workplace High School
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Temporal extension & Size expansion
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ize expansion

Temporal extension & S

Temporal extension (Workplace)

=R,

-

llllll

e ————

@ o < o~ o
SUOIIDRIBIUI JO JIaqUINN

10

6

Time [days]

46



Neighbourhood matching creates realistic surrogate temporal networks

Temporal extension & Size expansion

Temporal extension (Workplace)
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Temporal extension & Size expansion

Temporal extension (Workplace)
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Temporal extension & Size expansion

Temporal extension (Workplace)
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Temporal extension & Size expansion

Temporal extension (Workplace)
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Thank you

Do you have any questions?

CODE: https://github.com/AntonioLonga/ETNgen

alonga@fbk.eu

AntonioLonga%4

antoniolonga.github.io/
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Temporal extension & Size expansion

Temporal extension and size expansion (High school)
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