Antonio Longa, Giulia Cencetti, Bruno Lepri and Andrea Passerini

https://antoniolonga.github.io/

UNIVERSITÀ

TRENTO

DI

TABLE OF CONTENTS

Networks motifs

Temporal Network motifs

02

03

Egocentric Temporal Motifs

04 Applications 05

Conclusion

NETWORK MOTIFS

Network:

Network:

A network **G** is a pair of sets **G**=(**N**,**E**). Where **N** is a set of nodes and **E** is a set of edges (couple of nodes).

Social networks

Network:

Network:

Network:

NETWORK

How can we study networks?

are **subgraphs**, that **appear** in an observed network **significantly more often** than in compatible randomized networks.

are **subgraphs**, that **appear** in an observed network **significantly more often** than in compatible randomized networks.

Procedure

1) Count all possible substructure of a given network.

Input network

are **subgraphs**, that **appear** in an observed network **significantly more often** than in compatible randomized networks.

Procedure

- 1) Count all possible substructure of a given network.
- 2) Generate networks similar to the input one.

Input network

Null model

are **subgraphs**, that **appear** in an observed network **significantly more often** than in compatible randomized networks.

Procedure

- 1) Count all possible substructure of a given network.
- 2) Generate networks similar to the input one.
- 3) Count all possible substructure in the generated networks

Input network

Null model

are **subgraphs**, that **appear** in an observed network **significantly more often** than in compatible randomized networks.

Procedure

- 1) Count all possible substructure of a given network.
- 2) Generate networks similar to the input one.
- 3) Count all possible substructure in the generated networks
- 4) Check for those substructure that are:
 - 1. Over-represented
 - 2. Minimum deviation
 - 3. Minimum frequency

Input network

Null model

 $\begin{array}{c} \bigcirc & \bigcirc & \odot & \leftarrow \odot & & \\ & & & & \\ & & &$

[1] Milo, Ron, et al. "Network motifs: simple building blocks of complex networks." Science 298.5594 (2002): 824-827.

are **subgraphs**, that **appear** in an observed network **significantly more often** than in compatible randomized networks.

Procedure

- 1) Count all possible substructure of a given network.
- 2) Generate networks similar to the input one.
- 3) Count all possible substructure in the generated networks
- 4) Check for those substructure that are:
 - 1. Over-represented
 - 2. Minimum deviation
 - 3. Minimum frequency
- 5) Those structure are the motifs of the network.

Input network

Null model

Network motifs

are **subgraphs**, that **appear** in an observed network **significantly more often** than in compatible randomized networks.

Procedure

- 1) Count all possible substructure of a given network.
- 2) Generate networks similar to the input one.

3) Count all possible substructure in the generated networks

- 4) Check for those substructure that are:
 - 1. Over-represented
 - 2. Minimum deviation
 - 3. Minimum frequency
- 5) Those structure are the motifs of the network.

Input network

Null model

Network motifs

are **subgraphs**, that **appear** in an observed network **significantly more often** than in compatible randomized networks.

Procedure

- 1) Count all possible substructure of a given network.
- 2) Generate networks similar to the input one.
- 3) Count all possible substructure in the generated networks

are **subgraphs**, that **appear** in an observed network **significantly more often** than in compatible randomized networks.

Procedure

- 1) Count all possible substructure of a given network.
- 2) Generate networks similar to the input one.
- 3) Count all possible substructure in the generated networks

How many substructure are there?

3 nodes

are **subgraphs**, that **appear** in an observed network **significantly more often** than in compatible randomized networks.

Procedure

- 1) Count all possible substructure of a given network.
- 2) Generate networks similar to the input one.
- 3) Count all possible substructure in the generated networks

are **subgraphs**, that **appear** in an observed network **significantly more often** than in compatible randomized networks.

Procedure

- 1) Count all possible substructure of a given network.
- 2) Generate networks similar to the input one.
- 3) Count all possible substructure in the generated networks

are **subgraphs**, that **appear** in an observed network **significantly more often** than in compatible randomized networks.

Procedure

- 1) Count all possible substructure of a given network.
- 2) Generate networks similar to the input one.
- 3) Count all possible substructure in the generated networks

are **subgraphs**, that **appear** in an observed network **significantly more often** than in compatible randomized networks.

Procedure

- 1) Count all possible substructure of a given network.
- 2) Generate networks similar to the input one.

3) Count all possible substructure in the generated networks

- 4) Check for those substructure that are:
 - 1. Over-represented
 - 2. Minimum deviation
 - 3. Minimum frequency
- 5) Those structure are the motifs of the network.

Input network

Subgraph counts

Null model

Network motifs

Computational expensive

Temporal network • motifs

TEMPORAL NETWORK MOTIFS

Many times networks are not enough to represent real world scenarios.

Interactions change over time... Images could be videos... Traffic on roads change...

So temporal networks solve this problem.

Many times networks are not enough to represent real world scenarios.

Interactions change over time... Images could be videos... Traffic on roads change...

So temporal networks solve this problem.

Temporal network:

- 1) Edges → interactions among peoples
- 2) Nodes \rightarrow users in social networks
- 3) Attributes → enemies can become friends

Obviously, even temporal network has motifs.

Obviously, even temporal network has motifs.

How many substructure are there?

Network

Obviously, even temporal network has motifs.

Obviously, even temporal network has motifs.

How many substructure are there?

4

3

A lot of more

3

3

The **time** required to **count** motifs in **temporal network** is **higher** due to the **complexity** introduced by the **temporal** dimension.

The **time** required to **count** motifs in **temporal network** is **higher** due to the **complexity** introduced by the **temporal** dimension.

If the size of the sub graph is big, we have to compute an **isomorphism test**. It requires lot of time!

Egocentric Temporal Motifs

03

EGOCENTRIC TEMPORAL MOTIFS

EGOCENTRIC TEMPORAL MOTIFS

K = 2

EGOCENTRIC TEMPORAL MOTIFS

K = 2 Decide and EGO Node = E

Egocentric Temporal Neighbourhood Signature ETNS 011 111

IN SHORT

ETN

Egocentric Temporal Neighbourhood. (a sub structure)

IN SHORT

02

ETN

01

Egocentric Temporal Neighbourhood. (a sub structure)

ETNS

Egocentric Temporal Neighbourhood Signature. (a string representing a sub structure)

011 111

03

IN SHORT

Fast way to compute if two sub structures are identical

ETN

Egocentric Temporal Neighbourhood. (a sub structure)

ETNS

Egocentric Temporal Neighbourhood Signature. (a string representing a sub structure)

011 111

[0]

03

IN SHORT

Fast way to compute if two sub structures are identical

Egocentric Temporal Neighbourhood. (a sub structure)

ETNS

Egocentric Temporal Neighbourhood Signature. (a string representing a sub structure)

01

011 111

03

IN SHORT

Fast way to compute if two sub structures are identical

011 100 110 111

011 100 110 111

ETN

Egocentric Temporal Neighbourhood. (a sub structure)

01

ETNS

Egocentric Temporal Neighbourhood Signature. (a string representing a sub structure)

011 111

50

Egocentric temporal motifs

Procedure

- 1) Count all possible **egocentric** substructure of a given network.
- 2) Generate networks similar to the input one.
- 3) Count all possible ego substructure in the generated networks
- 4) Check for those **egocentric** substructure that are:
 - 1. Over-represented
 - 2. Minimum deviation
 - 3. Minimum frequency
- 5) Those egocentric structure are the EGOCENTRIC TEMPORAL MOTIFS

Now it is fast

APPLICATIONS

Cool! How can we use those structures?

APPLICATIONS

COMPUTE DISTANCES

APPLICATIONS

COMPUTE DISTANCES

$$dist_M(\mathcal{G}_1, \mathcal{G}_2) = 1 - \frac{EMB_M(\mathcal{G}_1) \cdot EMB_M(\mathcal{G}_2)}{||EMB_M(\mathcal{G}_1)|| ||EMB_M(\mathcal{G}_2)||}$$

APPLICATIONS

COMPUTE DISTANCES

$$dist_{M}(\mathcal{G}_{1},\mathcal{G}_{2}) = 1 - \frac{EMB_{M}(\mathcal{G}_{1}) \cdot EMB_{M}(\mathcal{G}_{2})}{||EMB_{M}(\mathcal{G}_{1})|| ||EMB_{M}(\mathcal{G}_{2})||}$$

Input graphs

APPLICATIONS

COMPUTE DISTANCES

Cosine similarity

$$dist_{M}(\mathcal{G}_{1},\mathcal{G}_{2}) = 1 - \frac{EMB_{M}(\mathcal{G}_{1}) \cdot EMB_{M}(\mathcal{G}_{2})}{||EMB_{M}(\mathcal{G}_{1})|| ||EMB_{M}(\mathcal{G}_{2})||}$$

Input graphs

APPLICATIONS

Sociopatter data, face to face interactions

Workplace Hospital High School 11 High School 12 High School 13 Primary school University

				ETMM-DIST				
	VS13	LH10	HS11	HS12	HS13	PS	DTU	
Workplace	0	0.07	0.29	0.22	0.29	0.67	0.47	
Hospital		0	0.29	0.22	0.30	0.66	0.45	
High School 11			0	0.04	0.04	0.59	0.06	
High School 12				0	0.02	0.61	0.13	
High School 13					0	0.62	0.08	
Primary school	2 2					0	0.62	
University							0	

				ETMM-DIST				
	VC13	L1112	HS11	HS12	HS13	PS	DTU	
Workplace	0	0.07	0.29	0.22	0.29	0.67	0.47	
Hospital		0	0.29	0.22	0.30	0.66	0.45	
High School 11			0	0.04	0.04	0.59	0.06	
High School 12				0	0.02	0.61	0.13	
High School 13					0	0.62	0.08	
Primary school						0	0.62	
University							0	

Workplace and Hospital are similar 0

				ETMM-DIST				
	VC13	L1112	HS11	HS12	HS13	PS	DTU	
Workplace	0	0.07	0.29	0.22	0.29	0.67	0.47	
Hospital		0	0.29	0.22	0.30	0.66	0.45	
High School 11			0	0.04	0.04	0.59	0.06	
High School 12				0	0.02	0.61	0.13	
High School 13					0	0.62	0.08	
Primary school		L				0	0.62	
University						-	0	
Workplace and Hospital are similar		Hig	gh Schools	are				

				ETMM-DIST					
	VS13	LH10	HS11	HS12 HS13 PS DTU					
Workplace	0	0.07	0.29	0.22	0.29	0.67	0.47		
Hospital		0	0.29	0.22	0.30	0.66	0.45		
High School 11			0	0.04	0.04	0.59	0.06		
High School 12				0	0.02	0.61	0.13		
High School 13					0	0.62	0.08		
Primary school						0	0.62		
University						-	0		

Quite similar to High Schools

				ETMM-DIST				
	VS13	LH10	HS11	HS12	HS13	PS	DTU	
Workplace	0	0.07	0.29	0.22	0.29	0.67	0.47	
Hospital		0	0.29	0.22	0.30	0.66	0.45	
High School 11			0	0.04	0.04	0.59	0.06	
High School 12				0	0.02	0.61	0.13	
High School 13					0	0.62	0.08	
Primary school	2 2					0	0.62	
University							P	

Quite similar to High Schools

Different from primary school

Future directions

ETN as building block for temporal network generation

Neighborhood matching creates realistic surrogate temporal networks

Antonio Longa^{1,2} Giulia Cencetti¹, Sune Lehmann^{3,4}, Andrea Passerini² and Bruno Lepri^{1*}

¹Fondazione Bruno Kessler, Trento, Italy ¹University of Trento, Trento, Italy ¹Tecnical University of Denmark, Kongens Lyngby, Denmark ²Copenhagen Center for Social Data Science, Copenhagen, Denmark

ETN as building block for temporal network generation

THANKS

Do you have any questions?

alonga@fbk.eu https://antoniolonga.github.io/

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, and infographics & images by **Freepik**

WORKPLACE

