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/ 01 Explainability

You need to be checked for COVID-19. The doctor takes a scan of your
lungs and uses a state-of-the-art deep neural network to automatically
compute a diagnosis. The model thinks that you are not infected.

Thanks to Stefano Teso for slides
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Question: Would you trust the model’s prediction?

Thanks to Stefano Teso for slides
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People are finding more and more ways of integrating machine learning
models into applications.

Medical Diagnosis

Crime (e.g., predicting recidivism in convicts)
Credit Scoring (e.g., approving loan requests)
Surveillance (e.g., face recognition, profiling)
Hiring (e.g., ranking/filtering candidates)
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People are finding more and more ways of integrating machine learning
models into applications.

Medical Diagnosis

Crime (e.g., predicting recidivism in convicts)
Credit Scoring (e.g., approving loan requests)
Surveillance (e.g., face recognition, profiling)
Hiring (e.g., ranking/filtering candidates)

Right of explanation: :

Example: you apply for a 50, 000 euro loan.
Unfortunately, your bank rejects your application.
You have a right to know why it was rejected: was it your credit history or your age/gender/ethnicity?

See https://en.wikipedia.org/wiki/Right_to_explanation /
’ ’1:*7—7,,,_““ 8
| ~ e
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Thanks to Stefano Teso for slides
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A\ | Horse-picture from Pascal VOC data set

CNN [ Horse class ]

Credit [Lapuschkin et al., 2019]

Thanks to Stefano Teso for slides
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Horse-picture from Pascal VOC data set

CNN

CNN

[ Horse class ]

[ Another class J
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Credit [Lapuschkin et al., 2019]

Thanks to Stefano Teso for slides

CNN [——— Horse class

Correlation between the presence of a watermark
when an horse is present.



01 Explainability

/ Explanations are studied in epistemology & philosophy of science. There are many
incompatible but complementary schools of thought:

/ Table 1: Philosophical Theories of Explanation
/

Theory Explananda (things to be explained) Explanantia (things doing the explaining)
E Deductive- Observed phenomenon or pattern of phenom- | Laws of nature, empirical observations, and deduc-
‘scb Nomological | ena tive syllogistic pattern of reasoning
= | Unification Observed phenomenon or pattern of phenom- | Logical argument class
ena
- Transmission | Observed output of causal process Observed or inferred trace of causal process
2 | Interventionist | Variables representing output of causal process | Variables representing input of causal process and
S invariant pattern of counterfactual dependence be-
tween variables
= Pragmatic Answers to why-questions True propositions defined by their relevance re-
8 lation to the explanandum they explain and the
s contrast class against which the demand for expla-
g nation is made .\
= Psychological | Observed phenomenon or pattern of phenom- | True propositions defined by their relation to the / |

ena user’s knowledge base and to the explanandum /

Thanks to Stefano Teso for slides = —
\ S
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e We need explainability!
e No unique definition of explanation, even in philosophy
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/ 01 Explainability

Take-away:

e We need explainability!
e No unique definition of explanation, even in philosophy
e Explaining machine learning models is still an open research question

Thanks to Stefano Teso for slides



/ 02 Graph Neural Networks

/" GNN are well know to you.




02 Graph Neural Networks

Which network do we test?

> Spectral Cheb GCN
[~ =N
R ' )
. | . \‘ N GraphSAGE | |  GIN
—>» Propagation J——b Convolutional Spatial ‘ |
f ) » Attentional GAT
>  Direct Set2Set )
p ™\ ,/' hY >0
GNN ’——» Pooling ——— .
O o«
» Hierarchical MinCutPooling .
—> Higher Order GraphConv
S 4
Zhou et al. Graph neural networks: A review of methods and applications
An overview of the adopted GNN architectures structured in a taxonomy as defined by Zhou et al. %

Blue boxes — Zhou et al.
Pink box — Qur extension
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Il |

/ Dataset Architecture GNN Fully conn. | HyperParams LR Epochs Tza.m Test
e cc Acc
S GeN 30-30-30 10-2 - 0.001 1500 0.994 0.998
GRAPHSAGE 30-30-30 10-2 - 0.01 3000 X X
GAT 30-30-30 10-2 heads = 1 0.01 3000 X X
GRID GIN 30-30 30-2 - 0.001 1000 1.0 1.0 Mean agg
CHEB 30-30 30-2 - 0.001 1000 1.0 1.0
MinCurPooL 32-32-32 32-2 - 0.001 700 0.92 0.93
SET2SET 30-30-30 10-2 - 0.001 1500 0.97 0.97
GRAPHCONV 30-30 30-2 - 0.001 500 1.0 1.0
GeN 60-60-60-60 60-10-2 - 0.001 7000 0.97 0.97
GRAPHSAGE 60-60-60-60 60-10-2 - 0.01 3000 X X
GAT 60-60-60-60 60-10-2 heads = 3 0.01 3000 X X
GRID-HOUSE GIN 30-30 30-2 - 0.001 1000 0.99 1.0 Mean agg
CHEB 30-30-30 30-2 - 0.001 1000 1.0 0.98 s
MinCurPooL 32-32-32 32-2 - 0.001 700 0.95 0.95
SET2SET 60-60-60-60 60-10-2 - 0.001 1500 0.97 0.97
GRAPHCONV 30-30 30-2 - 0.001 500 1.0 1.0
GeN 70-70-70 30-3 - 0.005 1000 0.99 1.0
GRAPHSAGE 30-30-30 30-3 - 0.01 3000 X X
GAT 30-30-30 10-3 heads = 1 0.01 3000 X X
STARS GIN 40-40 30-3 - 0.001 3000 0.99 1.0
CHEB 30-30 30-3 - 0.001 1000 0.99 0.99
MinCuTtPooL 32-32-32 32-3 - 0.001 400 0.99 0.99
SET2SET 70-70-70 30-3 - 0.001 1500 0.99 0.99
GRAPHCONYV 30-30 30-3 - 0.001 500 0.99 0.99
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Many GNN explainers have been proposed.




Many GNN explainers have been propos
We use Yuan taxonomy

/ (D 3 GNN explainers

ed.

Graph Neural Netwol
Explanations

)

Instance-level
Explanations
CGradients/Features) C Perturbations ) C Decomposition )

y

\ 4

GNNEXxplainer
SA PGExplainer LRP
Guided BP ZORRO Excitation BP
CAM GraphMask GNN-LRP
Grad-CAM Causal Screening
SubgraphX

Yuan et al. Explainability in Graph Neural Networks: A Taxonomic Survey

Model-level
Explanations

GraphLime
RelEx
PGM-Explainer

) (

XGNN
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/ 03 GNN explainers

; Gradient/Feature based:

e They uses gradients to explain the GNN.
e Widely used in image and text.
e Use the gradients as the approximations of input importance.
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Gramemsmammé/f/ / 0 3 GNN explainers

Gradient/Feature based:

A

i \/ e They uses gradients to explain the GNN.
e e Widely used in image and text.

e Use the gradients as the approximations of input importance.

Yuan et‘él./ES(/plainability in Graph
Neural Networks: A Taxonomic
Survey

What we use:

e GradExpINode [1] — Node importance mask

e GuidedBP [2] — Node importance mask 5
e |GNode [3] — Node importance mask .

o CAM [4] — Node importance mask

e GradCAM [4] — Node importance mask

e GradExplEdge[1] — Edge importance mask

e |GEdge 3] — Edge importance mask

[
[1] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional networks: Visualising image classification models and saliency maps. arXiv preprint arXiv:1312.6034, 2013.
[2] Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin Riedmiller. Striving for simplicity: The all convolutional net. arXiv preprint arXiv:1412.6806, 2014.
[3] Mukund Sundararajan, Ankur Taly, and Qiqgi Yan. Axiomatic attribution for deep networks. In International conference on machine learning, pages 3319-3328. PMLR, 2017.

Computer Vision and Pattern Recognition, pages 10772-10781, 2019.

— 23

[4] Phillip E Pope, Soheil Kolouri, Mohammad Rostami, Charles E Martin, and Heiko Hoffmann. Explainability methods for graph convolutional neural networks. In Proceedings of the IEEE/CVF €onference on .
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03 GNN explainers

\‘\ Perturbation based:

Study the output variations with respect to different input perturbations
Widely used in image and text.
Key idea — perturb important input information should impact the prediction
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GraphMask
Causal Screening
SubgraphX

Yuan et‘el./ES(plamaany in Graph
Neural Networks: A Taxonomic
Survey

What we use:

e  GNNexplainer [5]
e PGExplainer [6]

[5] Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec. Gnnexplainer: Generating explanations for graph neural networks. Advances in neural information processing systems, 32, 2019.
[6] Dongsheng Luo, Wei Cheng, Dongkuan Xu, Wenchao Yu, Bo Zong, Haifeng Chen, and Xiang Zhang. Parameterized explainer for graph neural network. Advances in neural information processmg systems. -

33:19620-19631, 2020.

GNNEXxplainer
PGExplainer
ZORRO /

? Pmbaﬂons' 7 / (D 3 GNN explainers

Perturbation based:

e Study the output variations with respect to different input perturbations
e Widely used in image and text.
e Keyidea — perturb important input information should impact the prediction

— Edge importance mask
— Edge importance mask .

— 25
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| Perturbation based:

L f

g B, e Use a surrogate interpretable model to approximate the prediction.
PGM-Explainer

Yuan etJéI/./Efplainability in Graph
Neural Networks: A Taxonomic
Survey




03 GNN explainers

i ~ 7
= ‘ Surrogate ) /o
| | Perturbation based:

Ceefind fue // e Use a surrogate interpretable model to approximate the prediction.
PGM-Explainer

Yuan et“él,,EX/plainability in Graph

Neural Nétworks: A Taxonomic
?

Survey

What we use:
PGM-Explainer [7] — Node importance mask

[6] Dongsheng Luo, Wei Cheng, Dongkuan Xu, Wenchao Yu, Bo Zong, Haifeng Chen, and Xiang Zhang. Parameterized explainer for graph neural network. Advances in neural information proce.ssing systems,

33:19620-19631, 2020.

[5] Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec. Gnnexplainer: Generating explanations for graph neural networks. Advances in neural information processing systems, 32, 2019

27
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Yuan etJéI/./Efplainability in Graph
Neural Networks: A Taxonomic
Survey

03 GNN explainers

| Decomposition based:

Decompose the original model prediction into several terms.
Study the importance of those terms wrt the input feature
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\C m | / 03 GNN explainers

Decomposition based:

LRP j‘w e Decompose the original model prediction into several terms.
Excitation BP = . 5
GNN-LRP e Study the importance of those terms wrt the input feature

Yuan et‘él.,ES(/plainability in Graph
Neural Networks: A Taxonomic
Survey

Model-level- based:

e XGNN [8] :
e GLGExplainer [9]

[8] Hao Yuan, Jiliang Tang, Xia Hu, and Shuiwang Ji. Xgnn: Towards model-level explanations of graph neural networks. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Dlscovew 2
& Data Mining, pages 430-438, 2020. 29
[9] Steve Azzolin, Antonio Longa, Pietro Barbiero, Pietro Lid, and Andrea Passerini. Global explainability of gnns via logic combination of learned concepts, 2022 » . e



/ Oq_ Benchmark datasets

| Graph Classification:

Grid
Grid-House
Stars
House-Color
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e Binary graph classification
e C(lasses:
o 0 — BArandom graph
o 11— BArandom graph + 3x3 grid graph
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e Binary graph classification
e C(lasses:
o 0 — BArandom graph
o 11— BArandom graph + 3x3 grid graph

Class 0 Class 1



/ Oq_ Benchmark datasets

/" Grid house:

e Binary graph classification

e C(lasses:
o 0 — BArandom graph + 3x3 grid graph OR 5 node house graph
o 11— BArandom graph + 3x3 grid graph AND 5 node house graph
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Grid house:

e Binary graph classification

e C(lasses:
o 0 — BArandom graph + 3x3 grid graph OR 5 node house graph
o 11— BArandom graph + 3x3 grid graph AND 5 node house graph

Class 0 Class 0 Class 1
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e 3class graph classification
e C(lasses:
o 0 — ERrandom graph + 1 star
o 1 — ERrandom graph + 2 stars
o 2 — ERrandom graph + 3 stars OR 4 stars



/ Oq_ Benchmark datasets

;

| Stars:

/
|

e 3class graph classification
e C(lasses:
o 0 — ERrandom graph + 1 star
o 1 — ERrandom graph + 2 stars
o 2 — ERrandom graph + 3 stars OR 4 stars

Class 1 Class 2 Class 2
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Evaluation
Explanation
e Binary GT
P = AucROC(Gexp; Gexp); |
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/ Evaluation

| Plausibility Explanation

P = AucROC(Gexp, Gexp)y V6T

Fidelity
F 2(l_Fsuf)'Fcom
17 :
f (I—Fsuf)+Fcom
1 N;-1 N;-1
Faup = 57 ; (9(G) = 9(Gexp(tr))) . Feom = 57 ;;-1 (9(G) = 9(G \ Gexp(tr)))



/ So far...

e 8 GNN architectures
e 10 Explainers
e 3 Dataset (6in the paper)

What we can do?
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RV, e 8 GNN architectures
| /\ | e 10Explainers

| / \/ e 3 Dataset (6 in the paper)
o

What we can do?

8x10x6x(1000 graphs) = 480 000 (explanations)

Do not waste time (and energy)! If you need, they are available here:
https://github.com/AntonioLonga/GraphXAl/tree/main/Explanations

ey



Look at them!

GunepBp GrapE xpLNobg PomExpL GrapExpLEDGE IGEDGE GNNE xpL PGExpL
(GRAD) (DECOM) (GRAD) (GRAD) (PERTURB) (PERTURB)
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/ 0 § Research Questions

e RQ1: How does the architecture affect the explanations?
e RQ2: How do explainers affect the explanations?
e RQ3: How do different types of data affect the explanations?



/ 0 § Research Questions

RQ1: How does the architecture affect the explanations?

e RQ1.1: Which is the architecture that has the best explanation?
e RQ1.2: Which is the easiest architecture to explain?
e RQ1.3: Which is the hardest architecture to explain?

Plausibility

All GRID Grip-House STARS
RQO1.1 | GRaPHCONV  GRAPHCONV CHEB SET2SET
RQ1.2 Gen CHEB GeN SET2SET
RQ1.3 GIN GIN GIN MinCuTPooL

Fidelity

All GRID GripD-HoUSE STARS
RQO1.1 | GrRaPHCONV CHEB SET2SET GRAPHCONV
RQ1.2 GcenN GeN MINCuTPooL  GRAPHCONV
RQ1.3 GIN GIN GIN MinCuTPooL




/ 0 § Research Questions

/ RQ2: How do explainers affect the explanations?

RQ2.1: Which is the explainer that explains in the best way?
RQ2.2: Which is the explainer that explains the maximum number of architectures?

RQ2.3: Which is the category of explainers that provides the best explanations? (Grad, Pert, Dec)
RQ2.4: Which is the best mask type between node and edge?

Plausibility

All GRID GriD-HOUSE STARS
RQ2.1 | GRADEXPLEDGE IGEDGE PGExprL IGEDGE
RQ2.2 | GRADEXPLEDGE GRADEXPLEDGE PGExpL GRADEXPLEDGE
RQ2.3 Pert Pert Pert Grad
RQ2.4 Edge Edge Edge Edge

Fidelity

All GRID GrID-HOUSE STARS
RQ2.1 IGEDGE PGExrL IGEDGE GRADEXPLEDGE
RQ2.2 IGEDGE IGEDGE IGEDGE GNNExPL
RQ2.3 Pert Pert Pert Pert
RQ2.4 Edge Edge Edge Edge
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RQ3: How do different types of data affect the explanations?
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0 § Research Questions

& RQ3: How do different types of data affect the explanations?

GRID
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0 § Research Questions

GRID

1.0
GraphConv
Gen
Cheb
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Cheb Gcn
0.8+ MinCutPool
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RQ3: How do different types of data affect the explanations?

CHEB
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5 Research Questions

GRID HOUSE

/ RQ3: How do different types of data affect the explanations?

Class 0 Class 1
1.0 1.0
Sy MinCutPool
MinCutPoo
Cheb  sSet2Set Set2Set PR
MjnCutPool raphConv
i Set2Set Chab
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Gen a Gen
0.8 Ge 0.8 1 cn
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0.4+ Set2Set 0.4+ CIMInI CutPool PgmExpl
Gen e GradExplEdge
Gin ® IgEDGE
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Set2Set ' e PgExpl
MinCutPool
Gen
0.2 1 0.2 1 Mi P
Gir GraphConv
GraphConv MinCutPool Sotzgﬁt""d‘é;,
Gen Set2Set Cheb
Gen
0.0 T T T T 0.0 T T T T
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5 Research Questions

GRID HOUSE

Class 0 Class 1
1.0 1.0
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RQ3: How do different types of data affect the explanations?
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Class 0
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0 § Research Questions

RQ3: How do different types of data affect the explanations?
STARS

GuiepBp GumepBp GrapExpLEDGE GrapExpLNoDE GrapExpLEDGE GumepBr
Gen GIN CHeB SEr2SET GrapHCONV MinCur PooL
" . N
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1) Human bias when defining Ground Truth.

a) In GRID network do we need the entire grid?
2)  We could use only the fidelity...

a) NOPE
3)  Overall it seems that:

a) Node Classification — Gradient based.

b)  Graph Classification — Edge mask based on Gradient or Perturbation.



Thanks!
Do you have any questions?

Antonio Longa
alonga@fbk.eu
https://antoniolonga.qgithub.io/
https:/twitter.com/Antoniol.onga94
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