
DS 2nd exam test, February 13th, 2023

Download the data

1. Consider the file sciprog-ds-2023-02-13-FIRSTNAME-LASTNAME-ID.zip and
extract it on your desktop.

2. Rename sciprog-ds-2022-02-13-FIRSTNAME-LASTNAME-ID folder:

put your name, lastname and id number

like sciprog-ds-2023-02-13-luca-marchetti-432432

From now on, you will be editing the files in that folder.

3. Edit the files following the instructions.

4. At the end of the exam, compress the folder in a zip file

sciprog-ds-2023-02-13-luca-marchetti-432432.zip

and submit it. This is what will be evaluated. Please, include in the zip archive
all the files required to execute your implementations!

Exercise 1 [FIRST MODULE]

You are given a dataset (Environment_Temperature.csv) containing the temperature for
several countries. For each country, the dataset contains the average temperature in each
month for the years 1961 to 2019.

As you can see from the screenshot above, each row represents a specific country (Area
Column) and a specific month (Months column). The average temperature is specified in
different columns (i.e. the element in red represents the average temperature of January
2010 in Afghanistan).

1. Load the dataset “Environment_Temperature.csv”
2. Build a function (get_Area) that extracts all the rows of a specific country, then

drop those columns having a "Months Code" greater than 7013.
Use the function (get_Area), to build two new dataframe:
-> italy = get_Area(data,"Italy")
-> germany = get_Area(data,"Germany")

3. Buil a function (get_avg_temp) that given a year and the dataframe of a specific
nation (i.e. italy) returns the average temperature of that year
i.e
->get_avg_temp(italy,1961)
-> 0.7703333333333333

4. Build a function (get_temperatures) that takes in input a dataframe of a specific
nation (i.e. italy) iterates from 1961 to 2019 and computes the average temperature
for each year (using the get_avg_temp() function previously defined).

5. Plot the average temperatures from 1961 to 2020 in Italy and Germany in a unique
plot. REMEMBER: set figsize=(10,3), xlabel = "Years", ylabel = "Temperature", the
legend (Italy and Germany), and remember to add the correct year on the ylabel.

6. Improve the previous plot by adding a smooth version of the lines. To make a

smooth version of the lines you should compute the average within a sliding
window equal to 5. i.e. suppose the input array is [1,3,4,1,7,4,1,3, …], the new
array will be [3.2, 3.8, 3.4 …] with a window of 5. Where 3.2 is the average of
[1,3,4,1,7], 3.8 is the average of [3,4,1,7,4]. like the figure bellow

the new plot should be something like:

in which darker lines represent the smooth version, while lines with a smaller alpha
(alpha = 0.2) are the original one.

Exercise 2 [SECOND MODULE, theory]
Given a list L of n elements, please compute the asymptotic computational complexity of
the following function, explaining your reasoning.

def func(L):
 n = len(L);
 k = 0;
 for i in range(n//2,n):
 j = 2;
 while j <= n:
 k = k + n // 2;
 j = j * 2;
 return k;

Exercise 3 [SECOND MODULE, theory]
What is the topological sorting of a directed acyclic graph (DAG)? Briefly describe an
algorithm to compute it and provide a possible topological view of the following DAG.

Exercise 4 [SECOND MODULE, practical]

Consider the DiGraphLL class provided in the file exercise4.py implementing a directed
graph by adjacency linked list.

The graph structure is shown below:

Please check carefully how the class is implemented since it might slightly differ from
the one you have seen during the practical class.

Implement the two missing methods:

1. checkSelfEdge(self, node):
This method checks whether a node has a “self” edge, meaning an edge pointing
to itself (e.g. node 4, 6,7). This method returns a boolean value.

HINT: Remember to make sure that the node you are checking for a self edge is
actually in the dictionary of nodes.

2. isolatedNodes(self):
This method finds the nodes that are isolated from the graph (i.e. node 3, node
7), meaning those that do not have any incoming/outgoing edges. Keep in mind
that a self-edge should not be considered as incoming/outgoing (i.e. Node 7 is
considered isolated). This method returns a list.

HINT: A node A is isolated only if:
- its dictionary of edges (inner dict) does not contain other nodes except for itself
or it’s empty
- node A is not present in the inner dict of other nodes of the graph (no incoming
edges).

