DS 1°' exam test, January 19", 2023

Download the data
1. Consider the file sciprog-ds-2023-01-19-FIRSTNAME-LASTNAME-ID.zip and
extract it on your desktop.

2. Rename sciprog-ds-2022-01-19-FIRSTNAME-LASTNAME-ID folder:
put your name, lasthame an id number
like sciprog-ds-2023-01-19-luca-marchetti-432432
From now on, you will be editing the files in that folder.
3. Edit the files following the instructions.
4. At the end of the exam, compress the folder in a zip file
sciprog-ds-2023-01-19-luca-marchetti-432432.zip

and submit it. This is what will be evaluated. Please, include in the zip archive
all the files required to execute your implementations!

Exercise 1 [FIRST MODULE]

Calls.csv is a dataset of calls between students, the dataset contains the timestamp (in
seconds) representing when the call happened. Then it has the id of the caller and the id
of the callee, finally, it contains the duration of the call. (if duration equals -1 then the
callee did not answer the phone)

1) Load the dataset calls.csv stored in the DATA folder.

2) A duration of -1 implies that the callee did not answer the phone. Search for the
couple that has the maximum number of missing calls. Build a function that takes
in inputs the calls, and searches for the maximum number of missing calls between
two users. The function MUST return the id of the two users:
def max_nb_missing_calls(calls):

return user_A,user_B



3)

Build a function that takes in input all the calls, the id of the caller, the id of the
callee and a min_dur. You have to count how many times the caller called the
callee that has a duration greater or equal to the minimum duration. The function
has to return the number of calls. NOTE: the default value for min_dur must be set
to 10

def count_calls(calls,caller,callee,min_dur):

return number_of _calls

Build a function that normalizes the durations from 0 to 1. i.e. the shortest call
became equal to duration 0, while the maximum duration became equal to 1.

X—X
m

in

Formally: X —
Y scALED X —-X_
max min
NOTE: do not include missed calls (-1) in the normalization!
The output of this function should be a list of scaled durations (from 0 to 1) but with

-1 for missed calls.

def normalize_durations(calls):
return list_of_durations

The column timestamp is given in seconds, you have to discretize it! Each
interaction appearing in 3600 seconds has to be discretized into 1. Then you have
to plot the time series. (to count the number of interactions happening in the
discretized series, you can use np.unique(array,return_counts=True).

NOTE: i) set the size of the figure equal to 3,10 [plt.figure(figsize=(10,3))]. ii) set the
x label with “timestamps” iii) set the y label with “nb calls”.



You should obtain a figure like the one bellow:

50 +

30 A

20 A

nb calls

0 100 200 300 400 500 600
tmestamps

Exercise 2 [SECOND MODULE, theory]

Given a sorted list L of n elements, please compute the asymptotic computational
complexity of the following fun function, explaining your reasoning.

def fun2(L, low, high, wv):
if high >= low:
m = (high + low) // 2
if L[m] == v:
return mid
elif L[m] > v:
return fun2 (L, low, m - 1, V)
else:
return fun2(L, m + 1, high, wv)
else:
return -1

def fun(L,v) :
n = len (L)
return fun2(L,0,n,v)

Exercise 3 [SECOND MODULE, theory]

Consider a hash table with separate chaining (implemented as mono-directional linked
list) to handle collisions. The keys 14, 16, 4, 5, 35 and 18 are inserted into an initially
empty hash table of length 7 using the hash function h(k) = k%7 (modulo operator). What
is the resulting hash table?

700



Exercise 4 [SECOND MODULE, practical]

Consider the DiGraphAsAdjacencyMatrix class provided in the file exercise4.py
implementing a directed graph by adjacency matrix.

The graph structure is shown below:

Please check carefully how the class is implemented since it might slightly differ from
the one you have seen during the practical class.

Implement the two missing methods:

1. checkSelfEdge(self, node):
This method checks whether a node has a “self” edge, meaning an edge pointing
to itself (e.g. node 3 and 6). This method returns a boolean value.

HINT: Remember to make sure that the node you are checking for a self edge is
actually in the list of nodes.

2. getTopAvgWeights_incoming(self):
This method first calculates the average of the weights of the incoming edges for
each node. Second, it finds the node/nodes with the highest average weights and
returns it/them (i.e. this method returns a list).

HINT: Please remember that a “0” in the matrix means no edge and hence you do
not want to include zeros in the calculation of the average. Also keep it mind that
you might have a tie, meaning two or more nodes with the same average.



