DS 2" exam test, February 8", 2024

Download the data
1. Consider the file sciprog-ds-2024-02-08-FIRSTNAME-LASTNAME-ID.zip and
extract it on your desktop.

2. Rename sciprog-ds-2024-02-08-FIRSTNAME-LASTNAME-ID folder:

Replace FIRSTNAME, LASTNAME, and ID with your first name, last name and
student id number. Failure to comply with these instructions will result in
the loss of 1 point on your grade.

like sciprog-ds-2024-02-08-alessandro-romanel-432432
From now on, you will be editing the files in that folder.
3. Edit the files following the instructions.
4. At the end of the exam, compress the folder in a zip file
sciprog-ds-2024-02-08-alessandro-romanel-432432.zip

and submit it. This is what will be evaluated. Please, include in the zip archive
all the files required to execute your implementations!

NOTE: You can only use the data structures and packages provided in the exam script
files. Importing other Python packages IS NOT allowed unless explicitly stated in the
exam instructions. Using Python collections or other libraries will impact your final grade.
Still, IT IS ALLOWED to use built-in Python operators as we have done during the
practical classes (max, min, len, reversed, list comprehensions, etc).

Exercise 1 [FIRST MODULE]

You have been provided with two CSV files: songs.csv and artists.csv, which are
structured as follows:

songs:
id name popularity duration ms explicit id_artists release date danceability energy key loudness
0 35iwgR4jXetl318WEWsalQ Carve 6 126903 1] [45tIt06X0I0lic4LBEVpIs] 1922-02-22 0.645 0.4450 0 -13.338
Capitulo 2.16 -
1 021ht4sdgPcrDgSk7JThKY Banguero] 98200 0 [14jtPCOoNZwqukSwdoDxry] 1922-06-01 0.695 0.2630 0 -22136
Anarguista
Vivo para
2 07ASyehtSnoedViJAZKNNc Quererte - 0 181640 0 [5LIO0JbxVSAMKBS2fUm3xX2] 1922-03-21 0.434 0.1770 1 -21.180
Remasterizado
3 08FmQUhxiyLTnepAhsbkas o Prisionero - 0 176907 0 [5Li00JbxVSAMKBS2UM3X2] 1922-03-21 0321 00946 7 -27.961
maqUnxiyLTnGp. Remasterizado [5Li0aJbx m 1 ’) ’
. Lady of the — .
4 08ysGfogCWfOGsKdwaojrse Evening 0 163080 0 [3BiJGZsyX9sJchTgcSATSU] 1922 0.402 0.1580 3 -16.900
artists:
id followers genres name popularity
0 ODhFxctimlYNNSEHuULQI5U 2.0 0 Jim Chapman 0
1 14jtPCOoNZwWquk5wdoDxry 3.0 [Fernando Pessoa 0
2 2nuMRGzeJ5|JEKIFSTrZowW 15.0 0 Francis Marty 0
3 4511t06X0l0lio4LBEVpIS 91.0 0 uli 4
4 4XVZpokXbUzg6QeomBANYS 0.0 [Grandcubby Trio 0

The songs file encompasses a compilation of songs played between 1922 and 1924,
while the artists file comprises details about the artists.

Note that the entries in the "id_artists" column in the songs table correspond to those in
the "id" column in the artists table.

1) load both the “songs.csv” and “artists.csv” files.

2) Print the song with the highest popularity by defining a function named
highest_popularity. This function should accept a DataFrame as input and print
both the name and the popularity of the song.

def highest_popularity(dataset):
print res
> highest_popularity(songs):

>> Title: Nobody Knows You When You're Down and Out
>> Popularity: 41

3) Create a function named longest_song_in_year that accepts the dataframe and a

year as input (default value = 1923) and returns the longest song in that specific
year. Ensure that the durations are presented in the format mm:ss:milliseconds.

As an example, consider a duration of 416,984 milliseconds; the converted format
would be 6 minutes, 56 seconds, and 984 milliseconds.

def longest_song_in_year(songs,year...):

return res

> longest_song_in_year(songs,1923)
>> ('Quiereme,Que ganas me dieron - en vivo', '6:56:984")

Create a function, named my_plot(), that generates a three-panel plot. Each panel
should display the histogram of danceability for a specific year using plt.hist().
Ensure each plot has an appropriate title, and save the figure as "Danceability.pdf"
for reference, similar to the provided figure.

def my_plot(songs):

> my_plot(songs)

Danceability dist. 1922 Danceability dist. 1923 Danceability dist. 1924
250

301

254 200

207 150 o
15
100
10

50 o
54

0- 0-
> 02 03 04 05 06 07 08 02 03 04 0.5 06 07 0.8 0.0

Conclusively, identify the artist ID associated with the highest number of songs
played in a specified year. Subsequently, utilize the second file, "artists.csv," using
the artist ID to retrieve the corresponding artist name. Define a function named
most_frequent_artist that takes both DataFrames ("artists.csv" and "songs.csv")
and a specific year as input. The function should print the artist's name, the given
year, and the number of songs attributed to that artist.

def most_frequent_artist(songs,artists,year):
print
> most_frequent_artist(songs,artists,1924)

>> The artist: Francisco Canaro
>> Played 59 songsin 1924

Exercise 2 [SECOND MODULE, theory]
Given a list L of n elements, please compute the asymptotic computational complexity of

the following function, explaining your reasoning.

def func (L) :
n = len(L);
k = 0;
for i in range(n//2,n):
J = 2;
while j <= n:
k =k +n // 2;
j=3 %2
return k;

Exercise 3 [SECOND MODULE, theory]
What is the topological sorting of a directed acyclic graph (DAG)? Briefly describe an

algorithm to compute it and provide a possible topological view of the following DAG.

Exercise 4 [SECOND MODULE, practical]
Consider the DiGraphLL class provided in exercise4.py implementing a directed
graph by adjacency linked list. The graph created by the script looks like this:

You are asked to implement the following functions:

1)

3)

getInDegree (self, nodeA)

This method first checks if the node is present in the graph. If it is not present, it
throws an error. If present, this method must return the number (Integer) indicating
the number of INCOMING edges into nodeA.

getOutDegree (self, noded)

This method first checks if the node is present in the graph. If it is not present, it
throws an error. If present, this method must return the number (Integer) indicating
the number of OUTGOING edges from nodeA.

findMostConnectedNode (self)

This method iterates over all the nodes of the graphs and calculates the degree for
each node (the sum of incoming and outgoing edges). Then, it returns a tuple with

the name of the most connected node (highest degree) and the degree of it (e.g.
("Node 5", 6))

