
DS 1st exam test, January 23rd, 2025

Download the data

1.​Consider the file sciprog-qcb-23-01-2025-FIRSTNAME-LASTNAME-ID.zip and
extract it on your desktop.

2.​ Rename sciprog-qcb-23-01-2025-FIRSTNAME-LASTNAME-ID folder:
​ ​ ​ ​

Replace FIRSTNAME, LASTNAME, and ID with your first name, last name and
student id number. Failure to comply with these instructions will result in

the loss of 1 point on your grade.

like sciprog-qcb-23-01-2025-alessandro-romanel-432432

From now on, you will be editing the files in that folder.

3.​ Edit the files following the instructions.

4.​ At the end of the exam, compress the folder in a zip file

sciprog-qcb-23-01-2025-alessandro-romanel-432432.zip

and submit it. This is what will be evaluated. Please, include in the zip archive
all the files required to execute your implementations!

NOTE: You can only use the data structures and packages provided in the exam script
files. Importing other Python packages IS NOT allowed unless explicitly stated in the
exam instructions. Using Python collections or other libraries will impact your final grade.
Still, IT IS ALLOWED to use built-in Python operators as we have done during the
practical classes (max, min, len, reversed, list comprehensions, etc).

Exercise 1 [FIRST MODULE]
You have been provided with two CSV files: songs.csv and artists.csv, which are
structured as follows:
​
songs:

artists:​

The songs file encompasses a compilation of songs played between 1922 and 1924,
while the artists file comprises details about the artists. ​
Note that the entries in the "id_artists" column in the songs table correspond to those in
the "id" column in the artists table.​

Exercise 1.1

Load the two .csv files.​

Exercise 1.2

Define a function named max_popularity that identifies the song with the highest
popularity. The function should print:

1.​ The name of the song.
2.​ Its duration (in seconds).

​ def max_popularity(songs…​
​ ​​ ….​
​ ​​ print(....​
​
​
> max_popularity(songs)​
>> Nobody Knows You When You're Down and Out 177.133

​
Exercise 1.3

Define a function named max_popularity_with_duration that takes the following
inputs:

1.​ songs (a DataFrame containing song data),
2.​ min_allowed_duration (the minimum duration for filtering songs),
3.​ max_allowed_duration (the maximum duration for filtering songs).

The function should:

●​ Filter the songs to include only those with a duration within the specified range
(min_allowed_duration to max_allowed_duration).

●​ Identify the song with the highest popularity among the filtered songs.
●​ Return the name of that song.

Set the default values for max_allowed_duration and min_allowed_duration to 4
minutes and 3 minutes, respectively.

​ def max_popularity_with_duration(...​
​ ​​ ….​
​ ​​ return

​
> max_popularity_with_duration(songs,2,3)​
>> Nobody Knows You When You're Down and Out

​
Exercise 1.4

Determine if there is a correlation between the popularity of an artist and the popularity of
their songs.

Instructions:

1.​ Write a function (named popularity_correlation) that takes as input the
artists and songs DataFrames.

2.​ Within the function, create a dictionary where:
○​ The key is the artist_id.
○​ The value is a tuple containing:

■​ The artist's popularity (from the artists DataFrame).
■​ The average popularity of the songs associated with that artist (from

the songs DataFrame).
3.​ Use this dictionary to create a scatter plot where:

○​ The x-axis represents the artist's popularity.
○​ The y-axis represents the average popularity of their songs.

4.​ Add the following to your scatter plot:

○​ Labels for the x-axis and y-axis.
○​ A descriptive title.

5.​ Save the figure as an image file. (see the figure below)

​ def popularity_correlation(...​
​ ​​ ….​
​ ​​ save​
​

​
Exercise 1.5

Define a function named summary that takes the following inputs:

1.​ songs (a DataFrame containing song data),
2.​ artists (a DataFrame containing artist data),
3.​ acousticness_threshold (a value used to filter songs by their acousticness

level).

Function Description:

1.​ Filter the songs DataFrame to include only songs with an acousticness level
greater than the given acousticness_threshold.

2.​ For the filtered songs, calculate the following for each artist:
○​ The artist's name.
○​ The average duration (in seconds) of their songs.
○​ The average acousticness threshold of their songs.

3.​ Write the results to a .txt file. Each line in the file should include:
○​ The artist's name,
○​ The average song duration,
○​ The acousticness threshold. (see the figure below, and use the same format)

Note: Set the default value of acousticness_threshold to 0.995.

​ def summary(...​
​ ​​ ….​
​ ​​ save

Exercise 2 [SECOND MODULE, theory]
Consider a hash table with separate chaining (implemented as mono-directional linked
list) to handle collisions. The keys 14, 16, 4, 5, 35 and 18 are inserted into an initially
empty hash table of length 7 using the hash function h(k) = (k+1)%7 (modulo operator).
What is the resulting hash table?

Exercise 3 [SECOND MODULE, theory]
What is the topological sorting of a directed acyclic graph (DAG)? Briefly describe an
algorithm to compute it and provide a possible topological view of the following DAG.

Exercise 4 [SECOND MODULE, practical]
For this exercise, you need to use the provided es4.py script as a template. You should
modify the script with the implementations requested below. Please note that:

●​ The code provided also contains the unittesting, comments were added to the
code to highlight which parts you should NOT modify and which parts you are
supposed to edit to include your implementations, as requested below.

Hints:

-​ the class TestDiGraphAsAdjacencyMatrix is the one you do not have
to modify

-​ the class DiGraphAsAdjacencyMatrix is the one you have to modify
-​ you can uncomment the last 2 lines of the __main__ function to test your

implementations

●​ The code provided will generate the following graph:

Given the direct graph class implemented using an adjacency matrix, as in the provided
script (es4.py), implement the following methods:

1.​ Implement, as described in the Graph ADT, the standard insertNode() and
insertEdge() functions

2.​ Implement, as described in the Graph ADT, the standard deleteNode() and
deleteEdge() functions

3.​ Implement the method BFS(start_node) with the following requirements:
a.​ Takes as input the starting node label
b.​ Returns a list of labels of the visited nodes
c.​ Performs a check if the starting node is in the graph
d.​ Use the Python class list() data structure as a queue to keep track of

the nodes to visit

​ Hints:

-​ The BFS visits the graph by levels (rows)
-​ Node labels are stored in a separate list inside the class

4.​ Implement the method hasPath(start_node, end_node) that given two
nodes returns a boolean value if there exists a path between the two nodes.​
Hints:

-​ Check that the two nodes are present in the graph
-​ You can exploit the previously implemented method

