
DS 2nd exam test, February 10th, 2025

Download the data

1.​Consider the file sciprog-ds-10-02-2025-FIRSTNAME-LASTNAME-ID.zip and
extract it on your desktop.

2.​ Rename sciprog-ds-10-02-2025-FIRSTNAME-LASTNAME-ID folder:
​ ​ ​ ​

Replace FIRSTNAME, LASTNAME, and ID with your first name, last name and
student id number. Failure to comply with these instructions will result in

the loss of 1 point on your grade.

like sciprog-ds-10-02-2025-alessandro-romanel-432432

From now on, you will be editing the files in that folder.

3.​ Edit the files following the instructions.

4.​ At the end of the exam, compress the folder in a zip file

sciprog-ds-10-02-2025-alessandro-romanel-432432.zip

and submit it. This is what will be evaluated. Please, include in the zip archive
all the files required to execute your implementations!

NOTE: You can only use the data structures and packages provided in the exam script
files. Importing other Python packages IS NOT allowed unless explicitly stated in the
exam instructions. Using Python collections or other libraries will impact your final grade.
Still, IT IS ALLOWED to use built-in Python operators as we have done during the
practical classes (max, min, len, reversed, list comprehensions, etc).

Exercise 1 [FIRST MODULE]

You are given a dataset containing information about car prices from 2000 to 2023. The file is located in the
data folder. Below is an example of the first five entries in the file:

Each row in the dataset includes various details about a car, such as the brand, model, year of manufacture,
engine size, fuel type, transmission type, additional specifications, and price.

Exercise 1.1
Load the dataset.

Exercise 1.2
Define a function named get_most_expensive that prints the brand, model, and year of the most
expensive car in the dataset.

​ def get_most_expensive(..):
​ ​​ …
​ ​​ print …

> get_most_expensive(df)
>> Toyota Corolla 2021

Exercise 1.3

Define a function named get_most_expensive_filter that takes a dataframe as input, along with
optional parameters: max_engine_size, year, and transmission.

The function should:

●​ Filter the dataset based on the given parameters:
○​ Include only cars with an engine size smaller than max_engine_size (if specified).
○​ Include only cars from the specified year (if provided).
○​ Include only cars with the specified transmission type (if given).

●​ Identify the most expensive car that meets the filtering criteria.
●​ Return the brand and model of that car.

If a parameter (max_engine_size, year, or transmission) is not specified, the function should ignore
that filter.

Example usage:

get_most_expensive_filter(df, max_engine_size=2.3, year=2021)

In this case, the function filters cars with an engine size smaller than 2.3 and from the year 2021, then
returns the brand and model of the most expensive car among them.

​ def get_most_expensive_filter(..):
​ ​​ …
​ ​​ return …

> get_most_expensive_filter(df)
>> ('Toyota', 'Corolla')

> get_most_expensive_filter(df,eng_size=2.3)
>> ('Honda', 'CR-V')

> get_most_expensive_filter(df,eng_size=2.3,year=2002)
>> ('Volkswagen', 'Passat')

> get_most_expensive_filter(df,eng_size=2.3,year=2002,trans="Manual”)
>> ('Audi', 'A3')

Exercise 1.4

We are interested in analyzing the average price of Electric and Hybrid cars over the years.​
Define a function named get_prices that takes fuel_type as an input and returns a dictionary where
each year is mapped to the corresponding average car price for that year.

The function should calculate the average price of cars for each year based on the specified fuel type. If no
fuel type is provided, the default should be Electric.

​ def get_prices(..):
​ ​​ …
​ ​​ return dictionary

> get_prices(df,fuel="Electric”)
>> {2000: 6410.222222222223,
 2001: 6838.45871559633,
 2002: 6985.532110091744,
 2003: 7529.824175824176,
 2004: 7602.838383838384,
 2005: 8096.38524590164,
 2006: 8720.137614678899,
 ….}

Exercise 1.5

As shown in the results, car prices have increased significantly, rising from approximately 6,000 in 2020 to
13,000 in 2023. However, making a direct comparison without accounting for the general increase in car
prices over time would be misleading.

To address this, define a new function named get_price_correct. Instead of returning the average price
of electric/hybrid cars in each year, this function should compute the price difference between the average
price of electric/hybrid cars and the overall average price of all cars in that year.

Example Calculation:

Consider the following dataset for the year 2020:

Brand Model Year Fuel Type ... Price

B1 m1 2020 Electric ... 20

B2 m2 2020 Electric ... 30

B3 m3 2020 Diesel ... 25

B4 m4 2020 Diesel ... 15

1.​Compute the overall average price for all cars in 2020:​
(20+30+25+15)/4=22.5

2.​Compute the average price of electric cars in 2020:​
(20+30)/2=25

3.​Compute the difference:​
25−22.5=2.5

The function should return a dictionary where the keys are the years and the values are the computed
differences.​
For this example, the dictionary would contain: {2020:2.5}

​ def get_prices_correct(..):
​ ​​ …
​ ​​ return dictionary

> get_prices_correct(df,fuel="Electric”)
>> {2000: 1016.48685326548,
 2001: 934.3946761874631,
 2002: 1028.7810278406614,
 2003: 1303.989530154884,
 2004: 1272.112495513511,
 2005: 1153.3481229318022,
 …}

Exercise 1.6

Now that you have two dictionaries—one for Electric cars and one for Hybrid cars—you need to visualize
the results using Matplotlib.

Plot Requirements:

●​ The plot should contain two lines:
○​ One for Electric cars.
○​ One for Hybrid cars.

●​ The x-axis represents the years (labeled "Years").
●​ The y-axis represents the difference between the average price of all cars and the average price of

Electric/Hybrid cars (labeled "Price difference").
●​ A legend should be included to distinguish between the two lines.
●​ The figure should resemble the provided example.
●​ Save the plot as "fig.png".

Alternative Approach:

If you were unable to complete the previous exercise (Exercise 1.5), define two lists of 23 values each and
assume they represent the computed differences for Electric and Hybrid cars, then proceed with the plot
using these lists.

Exercise 2 [SECOND MODULE, theory]
Given a list L of n elements, please compute the asymptotic computational complexity of
the following func function, explaining your reasoning.

def func(L):
​ n = len(L);
​ k = 0;
​ m = 2;
​ for i in range(n//2, n):
​ ​​ j = 2;
​ ​​ while j <= n:
​ ​​ ​ k = k + n / 2;

​​ ​ j = j * m;
​ ​return k;

Exercise 3 [SECOND MODULE, theory]
Perform a Breadth-First Search (BFS) traversal on the graph below and list the nodes in
the order they are visited.

Exercise 4.1 [SECOND MODULE, practical]

Slow Sort is a deliberately inefficient recursive sorting algorithm that follows a
divide-and-conquer strategy. Unlike efficient sorting algorithms like Merge Sort or Quick
Sort, Slow Sort makes unnecessary recursive calls, making it much slower. The algorithm
repeatedly sorts halves of the list and swaps elements in a wasteful manner.

In this exercise you are required to implement the Recursive Sorting Function _slow_sort().
That will be used inside the already coded sort method. The template is provided in the
python script es4_1.py .​

The _slow_sort() method is the core of the algorithm, which operates as follows:​

1.​ Base Case:​
* If the sublist has one or zero elements (left >= right), it is already sorted, so return.​

2.​ Recursive Case:​ ​
* Find the middle index: mid = (left + right) // 2​
* Recursively call _slow_sort() on the first half (left to mid).​
* Recursively call _slow_sort() on the second half (mid + 1 to right).​
* Compare the last element of the first half (arr[mid]) with the last element of the
second half (arr[right]).​
* If they are out of order, swap them.​
* Make a final recursive call on the entire range (left to right - 1) to propagate
swaps.

Exercise 4.2 [SECOND MODULE, practical]

Given the provided Binary Tree Class in the es4_2.py script implement a method
to_sorted_list() that returns the values of the nodes of the binary tree as a sorted list.

The script comes with a unittest class to test the code that you can use, do not modify
the test class.

Built-in sort functions are not required and are not supposed to be used.

Hint: Remember the properties of a binary tree!

	
	Example Calculation:
	Plot Requirements:
	Alternative Approach:

